Concreto pretensado

IDEA DE HORMIGÓN PRETENSADO

El hormigón pretensado consiste en eliminar los esfuerzos de tracción del hormigón mediante la introducción de tensiones artificiales de compresión antes de la aplicación de las cargas exteriores y que, superpuestas con éstas, las tensiones totales permanentes, y para todas las hipótesis consideradas queden comprendidas entre los límites que el material puede soportar indefinidamente.

Al salir una viga pretensada, del taller toda la sección trabajada a compresión y la repartición de esfuerzos es un diagrama triangular (fig. 1a), teniendo un valor cero en el vértice superior y al fatiga máxima admisible para el hormigón en la parte inferior. Este diagrama se logra mediante un detallado estudio de la repartición de los alambres y empieza a tener efecto en el momento de transmitir al hormigón el esfuerzo total de pretensado (operación de destensado).

clip_image002

Figura 1

Al entrar en servicio en la obra, en la viga tiene lugar unos esfuerzos de compresión y tracción  (diagrama b de fig. 1) que sumados con el esfuerzo de pretensado de la viga, resulta un diagrama cuya sección está sometida íntegramente a compresión (diagrama c de fig. 1), obteniéndose, de esta manera un elemento trabajando a flexión en el que se han eliminado totalmente los esfuerzos de tracción.

Algunas veces se aprovecha la resistencia a tracción del hormigón aceptando fatigas admisibles del orden de 6 kg/cm2. No obstante, es costumbre no tenerlo en cuenta para mayor seguridad ya que dentro de los ensayos a tracción del hormigón existe una notoria dispersión en los resultados (fig. 2)

clip_image004

Figura 2 y 3

 Asimismo, puede obtenerse un diagrama total en el que la parte inferior trabaja a compresión sin llegar a alcanzar el valor cero (fig. 3), correspondiendo al momento útil de la viga. De esta manera se alcanza un mayor coeficiente de seguridad a la fisura.

clip_image006

Figura 4

Cuando se va cargando sucesivamente la viga se rebasa la resistencia a tracción del hormigón rápidamente la fisuración, ya que los alambres ofrecen poca resistencia por estar tensados hasta cerca de su límite elástico. De ahí, pues, que el intervalo existente entre el momento útil de la viga y su momento de fisuración es muy reducido.

La figura 4 muestra esquemáticamente el proceso de pretensado así como las consecuencias que de él se derivan al aplicarlo a una viga. La fase 1 indica la longitud de un alambre sin tensar. Al aplicar un esfuerzo de tensión, dicho alambre sufre un alargamiento (fase 2). Una vez en tensión se hormigona la pieza quedando los alambres embebidos en la masa (fase 3). Cuando el hormigón está suficientemente endurecido se procede al destensado, transmitiéndose el esfuerzo al hormigón por adherencia en la fabricación de vigas de dimensiones modestas, y por anclaje terminal, en los casos de vigas grandes. Con el desentensado la pieza experimenta un acortamiento, complementado por una deformación plástica bajo el esfuerzo transmitido (fluencia) y de un relajamiento del acero con el transcurso del tiempo (fase 4). Todos estos fenómenos traen como consecuencia una pérdida de tensión en el acero que hay que reducir en lo posible. Una precaución importante es de dejar bien anclados los alambres en las placas de los macizos de amarre ya que un pequeño deslizamiento de la armadura se traduciría en una pérdida de tensión de capital importante.

Las viguetas recibidas en obra, presentan, normalmente, una contraflecha debido a que la parte inferior de la vigueta sufre un acortamiento mientras que en la parte superior no ha habido deformación alguna puesto que el hormigón no está comprimido. Esta contraflecha es favorable, ya que al colocar la vigueta en obra para efectuar el forjado, ésta desaparece debido al peso que sobre ella gravita. En sus condiciones normales de apoyo, las viguetas no deben presentar una contraflecha superior al quinientosavo de su longitud.

clip_image008

Figura 5

DIFERENCIA ENTRE HORMIGON ARMADO Y HORMIGON PRETENSADO

El hormigón pretensado consta de los mismos materiales que el hormigón armado: hormigón y acero.

En hormigón armado solamente trabaja a compresión la parte de hormigón que se halla por encima de la fibra neutra, siendo el acero el que soporta los esfuerzos de tracción (fig. 5). En cierto modo, la armadura puede considerarse como un hormigón ficticio con elevada resistencia a la tracción y que tiene por función reemplazar al hormigón sometido a causa de los alargamientos excesivos.

En hormigón pretensado la armadura es una fuerza creada artificialmente con el único fin de conseguir que la sección entera trabaje a compresión, eliminándose los esfuerzos de tracción y por tanto la fisuración.

VENTAJAS DEL HORMIGÓN PRETENSADO

Son numerosas y entre las más importantes descuellan las siguientes:

a) Eliminación de fisuras por estar sometido a esfuerzos de compresión bajo todas las hipótesis de carga.

b) Comportamiento elástico y utilización de la sección total.

c) Permite salvar grandes luces con cantos muy reducidos.

d) Ahorro de acero debido a la posibilidad de utilizar totalmente la armadura hasta cerca de su límite elástico y, como consecuencia, una reducción en la cuantía.

e) Aligeramiento de la construcción y, por tanto, reducción de las secciones de elementos sustanciales como pilares y cimientos.

f) Eleva la durabilidad de la construcción.

Salta a la vista, la importancia que tiene el hormigón pretensado. No obstante, ofrece algunas desventajas como la aplicación del pretensado en obras de pequeña y mediana importancias, así como en la fabricación de elementos pretensados en serie donde se necesitan grandes inversiones de capital para efectuar las instalaciones.

RESUMEN HISTÓRICO

La idea relativa al hormigón pretensado es ya antigua. Doehring fue el que, en 1888, expuso claramente por primera vez el concepto de la precompresión. La aplicación práctica de estos conocimientos no tuvo éxito ya que no se disponían de materiales adecuados.

Posteriormente, en 1907, Koenen volvió sobre el principio de precompresión, asentado anteriormente por Doehring y estudió su aplicación en obras de ingeniería para sustituir el hormigón armado. Un sector de aplicación fue en los ferrocarriles para evitar la fisuración y, consecuentemente, la oxidación, pero debido a la baja tensión dada al acero no se pudo compensar la pérdida de tensión dada al acero no se pudo compensar la pérdida de tensión causada por la tracción y la deformación plástica del hormigón.

Como consecuencia de estos fracasos, fue abandonada la investigación sobre el hormigón pretensado y no fue hasta en el año 1928 que Freyssinet (ingeniero francés) diera a conocer la necesidad de emplear materiales de alta calidad.

Los aceros empleados hasta entonces tenían un límite elástico muy bajo y la tensión quedaba anulada por los fenómenos antes citados. Los hormigones no tenían compacidad y se desconocían algunos principios básicos sobre la granulometría, relación agua-cemento, vibración, etc. Fue esta gran ingeniero francés que dio las directrices a seguir para la nueva forma de construcción, y que dimanaron de los profundos estudios y experiencias llevados a término por él mismo. Freyssinet aclaró, ante todo, el comportamiento plástico del hormigón bajo el esfuerzo de pretensado. También hizo importantes declaraciones sobre las deformaciones por contracción y estudió ampliamente la deformación diferida. Aconsejó el empleo de hormigones de alta calidad y aceros de elevado límite elástico.

Después de Freyssinet aparecieron importantes investigadores, destacándose entre ellos Finsterwalder, Hoyer, Magnel, etc.

Fue Hoyer el que introdujo el anclaje del acero en el hormigón por adherencia mediante el empleo de alambres de “cuerda de piano’ con lo que se consigue una mayor regularidad en la transmisión del esfuerzo terminal de la armadura. Los alambres empleados (cuerdas de piano) son de acero de alta resistencia de 0’50 a 2 mm. de diámetro y una resistencia a la rotura que oscila entre 12.000 y 22.000 kg/cm2. Los dispositivos tensores se sueltan una vez el hormigón está suficientemente endurecido.

El hormigón pretensado con cuerdas de piano “Hoyer” resulta ideal para la fabricación de vigas de cualquier longitud y forma, tuberías de agua a presión, depósitos para líquidos, postes eléctricos, placas, traviesas de ferrocarril, y otras muchas más aplicaciones.

APLICACIONES

Son numerosas las aplicaciones del hormigón pretensado, tanto en forma de elementos para la construcción de viviendas y edificios industriales como en las grandes y atrevidas obras de ingeniería.

En el aspecto económico, es cierto que el campo del hormigón pretensado se extiende en detrimento del hormigón armado. No obstante, la sustitución por el hormigón pretensado del hormigón armado es un hecho que no tendrá lugar en un futuro próximo. Existen todavía numerosos problemas que resolver en cuanto a la aplicación del hormigón pretensado en obras de pequeña importancia y su empleo resultaría antieconómico.

Viguetas

Es la fabricación más importante y la que se ha desarrollado más eficazmente. Su fabricación se efectúa en serie y requiere importantes inversiones de capital. Generalmente, las fábricas más destacadas poseen instalaciones de calefacción y curado, con lo cual se reduce a un mínimo el cilco de la fabricación.

El curado de las viguetas se hace comúnmente por inmersión de las mismas en agua; para ello es necesaria la existencia de unas amplias balsas que, generalmente, se hallan al final de la nave de producción para aprovechar los movimientos de los puentes grúa. Una vez han sido curadas, pasan al parque o al almacén y de allí se procede al suministro en las obras.

El curado de vapor es muy efectivo y rápido pero las instalaciones son excesivamente costosas.

El movimiento de las piezas terminadas se realiza mediante puentes-grúa que se desplazan a lo largo de la nave de producción. Asimismo, la mayoría de las fábricas poseen un laboratorio en el que se llevan a cabo ensayos de granulometría de los áridos, ensayos de viguetas a la rotura y fisuración, y rotura de probetas para determinar la resistencia del hormigón.

Las dimensiones de estos elementos son variadas. Para edificios destinados a viviendas con crujías normales, se emplean las alturas de 16 a 23 centímetros. Para sobrecargas mayores –almacenes, fábricas, garajes, etcétera- se emplean alturas superiores. actualmente, la mayoría de las fábricas dedicadas a la producción de viguetas pretensadas, suministran jácenas con destino a cargaderos, división de crujías, etc. alcanzándose normalmente momentos flectores entre 3.000 y 10.000 kgm (fig.6)

Canales para regadío

Hasta ahora su comportamiento ha resultado altamente satisfactorio, ya que se evita la fisuración tan frecuente en los canales construidos de hormigón armado. La sección de los canales semicircular o muy parecida a ésta, realizándose el pretensado en el sentido longitudinal.

clip_image010

Figura 6 Jácena de hormigón pretensado lista para su colocación en obra.

Pistas para carreteras y aeropuertos

El empleo de hormigón pretensado en estas obras presenta notables ventajas técnicas. Se reduce el grosor del pavimento, se suprimen las juntas de dilatación y proporciona una economía muy importante en lo que atañe a la conservación.

El empleo del hormigón pretensado en la construcción de carreteras todavía está en una fase experimental, pero sin duda alguna, se prevé una aplicación en gran escala.

Tubería de alta presión.

Se fabrican tuberías con presiones de servicio variables. El diámetro oscila entre 0,30 y 1,50 metros. Las ventajas técnicas y económicas hacen que sean aceptadas en la mayoría de obras importantes.

Traviesas para ferrocarril

Estas deben ser ligeras, manejables y lo bastante resistentes para soportar los esfuerzos de las percusiones transmitidas por los carriles al paso de los trenes. Asimismo deben resistir indefinidamente a los efectos de la intemperie.

El enorme consumo de madera que tuvo lugar durante la pasada guerra, dio lugar a una serie de ensayos de traviesas de hormigón que terminaron en la fabricación industrial en gran escala.

Al principio tuvieron lugar algunos fracasos, pero después de las investigaciones llevadas a cabo por Freyssenet, se dedujo que la rotura era debida al esfuerzo cortante, como consecuencia del apoyo normal del carril, o por torsión debido a la mala distribución del balasto.

El alambre empleado en la fabricación de traviesas es de armadura delgada (cuerdas de piano) y el anclaje es por adherencia con el hormigón, pudiéndose tensar simultáneamente varias traviesas.

Corrientemente las fábricas dedicadas a la fabricación de traviesas poseen notorias y efectivas instalaciones de curado a vapor. Estas consisten en unas cámaras con vapor a presión y con temperatura que oscila entre 70 y 80 grados centígrados. Las traviesas se encuentran en condiciones de ser expedidas al cabo de 7 u 8 días de permanecer en dichas cámaras (figura 49).

La fabricación de traviesas está muy extendida en Inglaterra, Francia y Alemania. Concretamente, la firma alemana Thormann und Stiefel, A G., tiene una producción anual de 200.000 traviesas pretensadas por año.

Depósitos

La aplicación del hormigón pretensado se ha empleado ventajosamente en la construcción de grandes depósitos de agua. Como las tensiones de tracción del hormigón producidas por la presión del líquido, no deben sobrepasar de un determinado valor, a fin de evitar la fisuración, las armaduras se tensan. Mediante el pretensado se consigue una perfecta estanqueidad del depósito y, por tanto, la anulación de fisuras.

Los Estados Unidos van a la vanguardia en la construcción de depósitos de hormigón pretensado, técnica que han desarrollado ampliamente, mientras que en Europa se ha dado más importancia a la fabricación de elementos pretensados sometidos a flexión.

La solera más indicada para los depósitos es la formada por una losa monolítica de gunita, con una cuantía de armadura de 5% en cada dirección. Cuando el espesor del fondo no excede de 5 centímetros puede prescindir de las juntas de dilatación.

clip_image012

Al hormigonar la pared del depósito se dejan unos huecos en el que se introducen posteriormente tirantes verticales que se fijan en sus extremos por anclajes embebidos en la masa del hormigón. El tensado de estos tirantes se realiza con gatos hidráulicos. a continuación se tensa la armadura periférica.

Con el tensado de los tirantes verticales, se eliminan las grietas horizontales originadas durante el pretensado circular.

Si la pared se construye de gunita se levanta un encofrado, para el paramento exterior solamente, y sobre él se lanza el hormigón con pistola (cement-gun). Seguidamente se dispone un zuncho pretensado de 5 mm. de diámetro anclado previamente a la pared.

El espesor de la cubierta varía entre 5 y 15 centímetros según las dimensiones del depósito. Encima de la cimbra se coloca un mallazo metálico y a continuación se proyecta el hormigón.

La figura 7 representa la sección vertical de un depósito circular con la disposición de la armadura.

Cuando el depósito se construye de hormigón se forma un encofrado circular vertical y en él se vierte la masa. Antes de aplicar el pretensado a los alambres, el hormigón tiene una edad mínima de siete días.

 Puentes

Actualmente el hormigón pretensado está desplazando al hormigón armado en la construcción de puentes. Resaltan las ventajas de economía, canto reducido de las vigas y el aspecto agradable del conjunto. La construcción de puentes puede hacerse de dos maneras: ”in situ” o mediante piezas fabricadas en taller que más tarde se acoplan en la obra. El primer sistema ha alcanzado gran desarrollo en Alemania, mientras que en Francia y otros países se ha optado por el segundo sistema.

En la construcción de puentes se emplean cables de elevada resistencia. Una vez las piezas prefabricadas han sido colocadas en sus emplazamientos correspondientes, se hacen pasar los cables por los agujeros dejados en ellas previamente. El anclaje de los cables es terminal, es decir, que no existe adherencia entre el hormigón y la armadura a lo largo de la viga. Los cables se tensan después del endurecimiento del hormigón (postensado).

clip_image014

Figura 8

La figura 8 muestra un dispositivo de anclaje terminal muy corriente. Después de tensar la armadura mediante el gato hidráulico, se introduce a la pieza de acero A embebida en el hormigón, el cono B. Después de su fijación se sueltan los hilos del cable enhebrados en el gato hidráulico. A continuación se maciza con hormigón todo el dispositivo de anclaje.

Posteriormente al anclaje de la armadura, se inyecta en la vaina hormigón a presión, macizándose así todo el conducto a lo largo de la pieza. En algunos puentes interesa volver a tensar los cables al cabo de cierto tiempo, debido a la pérdida de tensión que han sufrido; en este caso no se realiza la inyección del hormigón. Además de la armadura longitudinal, existe otra secundaria (estribos) para absorber el esfuerzo cortante, armadura que también suele tensarse. Puede también existir una armadura horizontal tensada (figura 9).

En la figura 10 puede verse la disposición de los cables en una viga apoyada. Un problema de capital importancia que se presenta en este caso, es el rozamiento que tiene lugar en las zonas de curvatura de los cables.

clip_image016

Figura 9

clip_image018

Figura 10

Otros elementos de hormigón pretensado

Se fabrican también postes para la conducción de energía eléctrica, postes para vallas, pilotes, soportes de madera, placas, estructuras, etc.

clip_image020

Figura 11

La figura 11 representa un techo formado con placas pretensadas en forma de U.

La figura 12 muestra una estructura de hormigón pretensado.

clip_image022

Figura 12 Estructura de hormigón pretensado.


CivilGeek

Autor de este post: CivilGeek

Estudiante de Ingeniería Civil, que comparte información relacionado a esta profesión y temas Geek. "Si buscas resultados distintos, no hagas siempre lo mismo"

Ha publicado 1382 posts



2 Responses

  1. PAVEL BOLIVAR
    PAVEL BOLIVAR 12 abril, 2012 at 10:53 AM | | Reply

    muchas gracias por la informacion me sirvio de mucho

    1. Fe
      Fe 10 octubre, 2012 at 12:47 AM | | Reply

      Gracias por tu buen aporte!

Leave a Reply