

Lección 14. Polímeros

Juan Antonio Polanco Madrazo Soraya Diego Cavia Carlos Thomas García

DPTO. DE CIENCIA E INGENIERÍA
DEL TERRENO Y DE LOS MATERIALES

Este tema se publica bajo Licencia:

Creative Commons BY-NC-ND 4.0

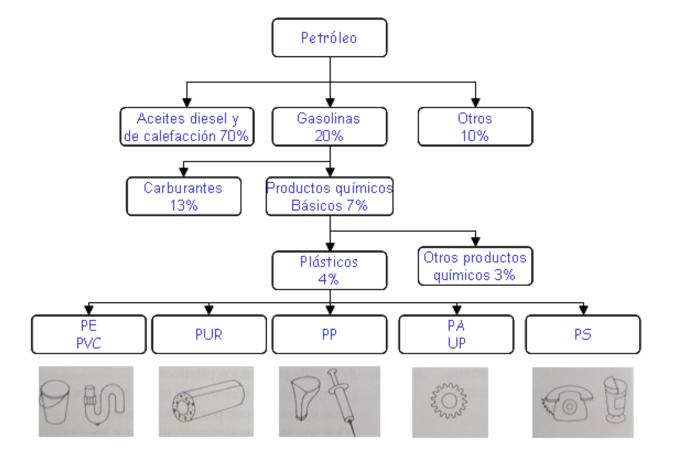
Polímeros

Polímero: material compuesto por moléculas de cadena larga, constituidas, cada una de ellas, por unidades repetitivas, que se conectan entre sí, pudiendo haber miles o millones de unidades en una sola molécula

La mayoría de los polímeros se basan en el carbono y, por consiguiente, son considerados sustancias químicas orgánicas

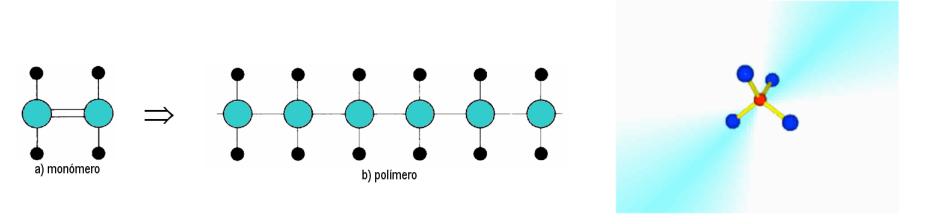
Polímeros naturales: lana, seda, caucho, celulosa, proteínas, etc.

Polímeros artificiales: plásticos, elastómeros, siliconas, etc.


Con excepción del caucho natural, los materiales poliméricos usados en ingeniería son sintéticos y están elaborados mediante procesos químicos, obtenidos a partir del petróleo, el gas natural o el carbón

Materia prima

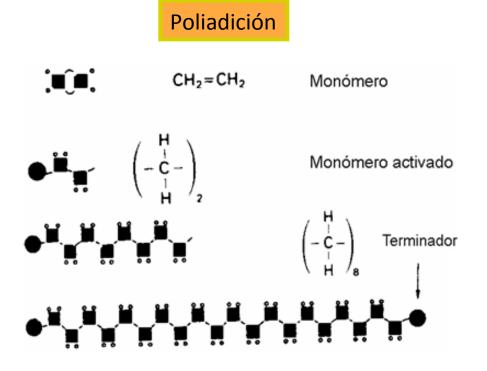
Los polímeros son el resultado de un proceso de síntesis, partiendo de materias primas elementales

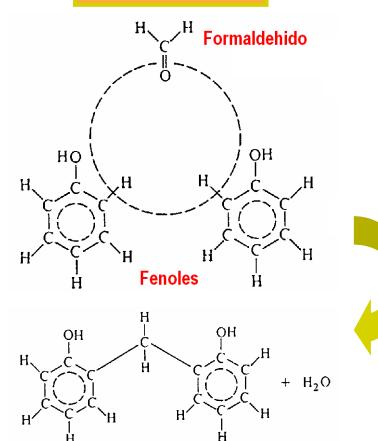


Síntesis de los polímeros

Los polímeros se sintetizan mediante la unión de muchas moléculas pequeñas (monómeros) para formar moléculas muy grandes, llamadas macromoléculas, las cuales poseen una estructura en forma de cadena

Inicialmente, se dispone de los monómeros de forma aislada y, a través de una reacción química, se unen entre sí para constituir una macromolécula. Los átomos se mantienen unidos en esta molécula por medio de enlaces covalentes

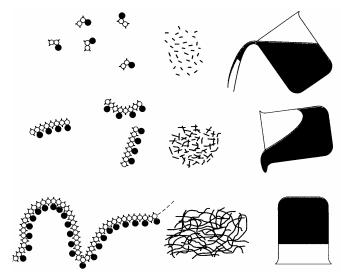


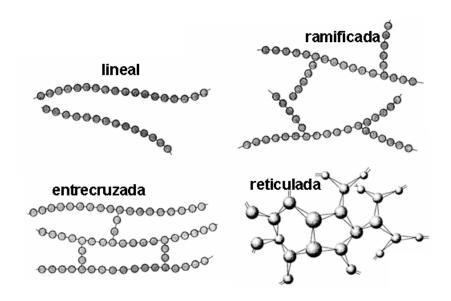

Síntesis de los polímeros

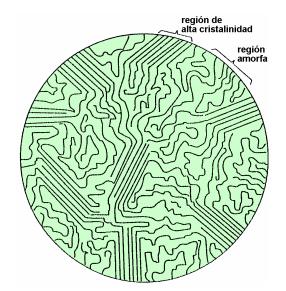
Las principales vías de obtención de los polímeros sintéticos son:

- Poliadición (iniciación, crecimiento y detención)
- Policondensación (reacción por pasos)

Policondensación

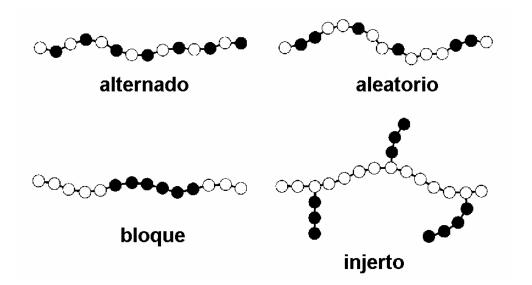






Síntesis de los polímeros

La forma de entrelazarse las cadenas condiciona el comportamiento del polímero (lineal, ramificado, reticulado, cristalino, amorfo, etc.)



Clasificación de los polímeros

Homopolímeros: generados a partir de un sólo monómero

Copolímeros: sus moléculas están constituidas por unidades repetitivas de dos monómeros diferentes

Terpolímeros: generados a partir de tres monómeros diferentes

Blends: mezclas de dos o más polímeros

Clasificación de los polímeros

En función del comportamiento que presentan los polímeros frente a la temperatura se distinguen:

Termoplásticos: son materiales sólidos a temperatura ambiente, relativamente blandos y dúctiles, que cuando se someten a temperaturas de algunos cientos de grados se convierten en líquidos viscosos

CARACTERÍSTICAS DE LOS TERMOPLÁSTICOS MÁS COMUNES										
Polímero	Símbolo	Método de polimerización	Grado de cristalinidad	Módulo de elasticidad (MPa)	Resistencia a la tracción (MPa)	Elongación	Densidad (g/cm³)	Temperatura de transición vítrea	Temperatura de fusión	Participación en el mercado
Acetal	POM	Policondensación	75 %	3500	70	25 – 75 %	1,42	-80 °C	180 °C	<1%
Polimetil- metacrilato	PMMA	Poliadición	0%	2800	55	5%	1,20	105 °C	200 °C	≈1%
Acrilonitrilo- Butadieno- Estireno	ABS	Poliadición	0%	2100	50	10 – 30 %	1,06		_	≈3%
Acetato de celulosa	CA	Policondensación	0%	2800	30	10 – 50 %	1,30	105 °C	306 °C	< 1 %
Teflón	PTFE	Poliadición	95 %	425	20	100 - 300 %	2,20	127 °C	327 °C	<1%
Nylon 6.6	PA 6.6	Policondensación	95 %	700	70	300%	1,14	50 °C	260 °C	≈1%
Policarbonato	PC	Policondensación	0%	2500	65	110 %	1,20	150 °C	230 °C	≈1%
Tereftalato de polietileno	PET	Policondensación	0-30%	2300	55	200 %	1,30	70 °C	265 °C	≈2%
Polietileno de baja densidad	LDPE	Poliadición	55 %	150	15	100 – 500 %	0,92	- 100 °C	115 <i>°</i> C	≈20%
Polietileno de alta densidad	HDPE	Poliadición	92 %	700	30	20 – 100 %	0,96	- 115 °C	135 °C	≈15%
Polipropileno	PP	Poliadición	90 %	1400	35	10 – 500 %	0,90	-20°C	176 °C	≈13%
Poliestireno	PS	Poliadición	0%	3200	50	1%	1,05	100 °C	240 °C	≈10%
Cloruro de polivinilo	PVC	Poliadición	0%	2800	40	2%	1,40	81 °C	212 <i>°</i> C	≈16%

Clasificación de los polímeros

En función del comportamiento que presentan los polímeros frente a la temperatura se distinguen:

Termoestables: también llamados duroplásticos o termoendurecibles. No toleran ciclos repetidos de calentamiento y enfriamiento como lo hacen los termoplásticos. Con calentamiento inicial, se ablandan y fluyen para ser moldeados, pero las temperaturas elevadas producen una reacción química que endurece el material y lo convierte en un sólido no fundible. Si se recalienta, se degradan por pirólisis en lugar de ablandarse. Son polímeros de cadenas entrecruzadas y estructura reticulada, mostrándose más duros, más resistentes y más frágiles que los termoplásticos

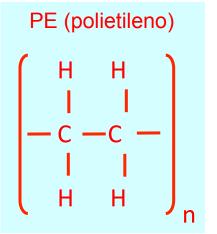
CARACTERÍSTICAS DE LOS TERMOESTABLES MÁS COMUNES									
Polimero	Método de polimerización	Módulo de elasticidad (MPa)	Resistencia a la tracción (MPa)	Elongación	Densidad (g/cm³)	Participación en el mercado			
Melamina	Policondensación	9000	50	< 1 %	1,50	≈ 4 %			
Epoxi	Policondensación	7000	70	0 %	1,10	≈ 1 %			
Baquelita	Policondensación	7000	70	< 1 %	1,40	≈6%			
Poliéster	Policondensación	7000	30	0 %	1,10	≈ 3 %			
Poliuretano	Policondensación	_	30	_	1,20	≈ 4 %			
Siliconas	Policondensación	_	30	_	1,65	≈ 1 %			

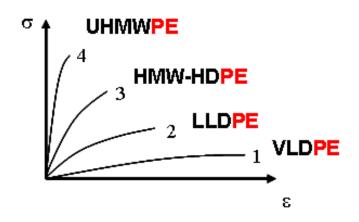
Clasificación de los polímeros

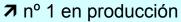
En función del comportamiento que presentan los polímeros frente a la temperatura se distinguen:

Elastómeros: (o cauchos) son polímeros que exhiben una extrema extensibilidad elástica cuando se someten a esfuerzos mecánicos relativamente bajos. Algunos elastómeros pueden estirarse alargando diez veces su longitud y luego recuperan completamente su forma original

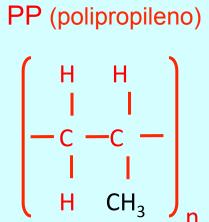
CARACTERISTICAS DE LOS ELASTOMEROS MAS COMUNES									
Polímero	Símbolo	Módulo de elasticidad (MPa)	Resistencia a la tracción (MPa)	Elongación	Densidad (g/cm³)	Límite de alta temperatura	Límite de baja temperatura	Participación en el mercado	
Poliisopreno	NR	18	25	700 %	0,93	80 °C	-50°C	≈22%	
Polibutadieno	BR	_	15	500 %	0,93	100 °C	-50°C	≈12%	
C. Butílico	PIB	7	20	700 %	0,92	110 °C	-50°C	≈3%	
Cloropreno	CR	7	25	500 %	1,23	120 °C	-20°C	≈5%	
Etilenpropilénico	EPDM	_	15	300 %	0,86	150 °C	-50°C	≈5%	
C. Poliisopreno	IR	18	30	500 %	0,93	80 °C	-50°C	≈2%	
C. Nitrilo	NBR	10	30	500 %	1,00	120 °C	- 50 °C	≈2%	
Poliuretano	PUR	10	60	700 %	1,25	100 °C	- 50 °C	_	
Siliconas	VMQ	_	10	700 %	0,98	230 °C	- 50 °C	<1%	
Estireno-Butadieno	SBR	17	20	700 %	0,94	110 °C	- 50 °C	< 40 %	
Elastómero termoplástico	SBS	_	14	400 %	1,00	65 °C	- 50 °C	≈12%	




Termoplásticos


POLIETILENO (PE)

- → bajo coste (salvo UHMW)
- → buen dieléctrico (cables)
- 7 resistente a la humedad
- **↗** expandible (espumable)
- ρ < 1 (ligero)
- alta dilatación térmica
- → baja resistencia a la intemperie
- → agrietamiento bajo tensión
- → inflamable



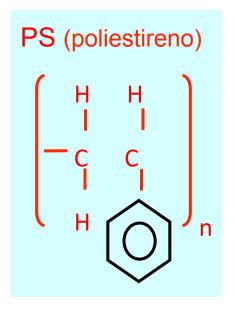
Termoplásticos

POLIPROPILENO (PP)



Propiedades similares al HDPE

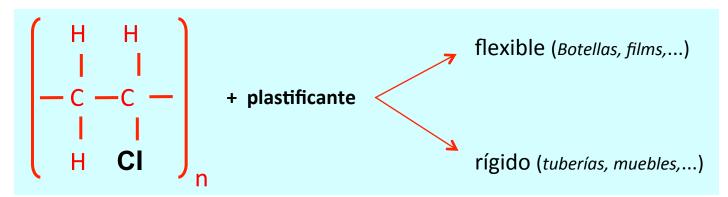
- > Temperatura de servicio
- > dureza
- > rigidez
- > resistencia ambiental



Termoplásticos

POLIESTIRENO (PS)

- Sólo disponible en forma amorfa (transparente)
- Resistente y frágil
- Expandible (espumable), EPS

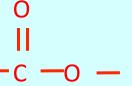

Lección 14. Polímeros

Termoplásticos

POLICLORURO DE VINILO (PVC)

Desprendimiento de HCI en su descomposición

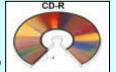
control de monómero residual libre en la industria alimentaria

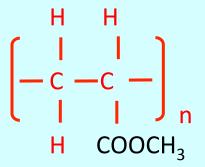

Lección 14. Polímeros

Termoplásticos

POLIÉSTERES

PC (policarbonato)




- faros, CD's, DVD's, bolígrafos
- aislantes para líneas de alta tensión

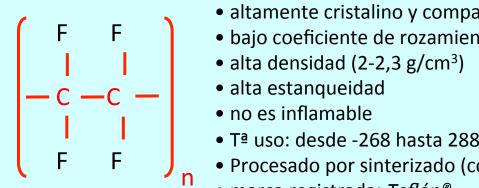
PMMA (polimetacrilato de metilo)

- Disponible en forma atáctica amorfo (transparente)
- aplicaciones ópticas (parabrisas, urnas,...)
- plexiglas®

PET (tereftalato de polietileno)

PBT (tereftalato de polibutileno)

Poliésteres <u>saturados</u> con orientación molecular para producir *fibras y películas*



Lección 14. Polímeros

Termoplásticos

PTFE (politetrafluoroetileno)

- altamente cristalino y compacto
- bajo coeficiente de rozamiento (poder antiadherente)

- Tª uso: desde -268 hasta 288 ºC
- Procesado por sinterizado (complejo y costoso)
- marca registrada: Teflón®

POM (polióxido de metileno)

$$\begin{bmatrix} -CH_2 - O - \end{bmatrix}$$

- cristalino y compacto, procede del formaldehído
- alta dureza, rigidez y estabilidad dimensional (no higroscópico)
 alta toxicidad en su descomposición

 - marca registrada: Acetal®

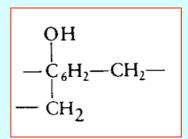
Termoplásticos

PA (poliamida)

Hexametilendiamina + ácido adípico \rightarrow PA6.6 + H₂O (condensación)

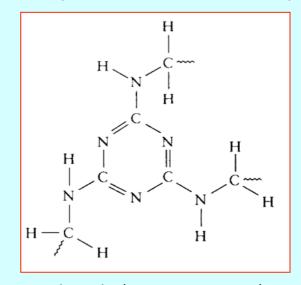
- marca registrada: Nylon®

PPTA (parafenilenotereftalamida)


• poliamida aromática

Termoestables

PF (resina fenólica)

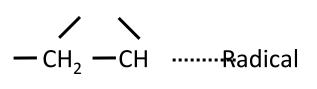


- acabado oscuro poco estético
- alta rigidez
- en polvo o líquido con capacidad de impregnación y unión (adhesivo)
- marca registrada: Bakelita®
- Bolas de billar, tableros de aglomerado (aglutina virutas de madera)

MF (melamina-formaldehido)

- dureza elevada (servicios de mesa)
- resistencia al agua
- en láminas, recubrimientos de suelos y muebles
- marca registrada: Formica®

Termoestables


UP (resina de poliéster)

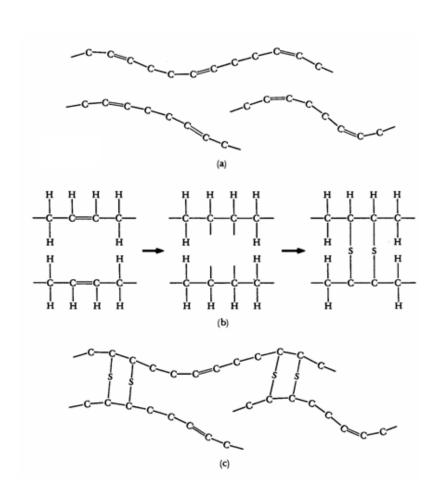
O
$$CH_2OH$$
 $-C-(CH_2)_m-C-O-C CH_2OH$

- reticulado de cadenas con estirenos no saturados
- matriz para refuerzo con fibra de vidrio

cascos de barco carrocerías de coche cascos de protección tanques de almacenamiento

EP (resina epoxi)

- reticulado en base a dos componentes activados térmicamente
- alta resistencia y compatible con f. de vidrio
- buen aislante de calor y humedad (pinturas)
- gran adhesivo compatible acero y hormigón


Elastómeros

NR (caucho natural)

- materia prima: látex (árbol "Hevea Brasiliens")
- Goodyear 1839. Vulcanizado
- grado de vulcanizado (%S). Aporta diferentes grados de dureza
- Limitación de aplicaciones por su acabado estético

Lección 14. Polímeros

Elastómeros

cauchos sintéticos

Poliisopreno
(similar al caucho natural)

Resistencia a tracción (psi): 3000

Etongación (%): 800

Densidad (g/cm³): 0.93

BR polibutadieno

(neumáticos)

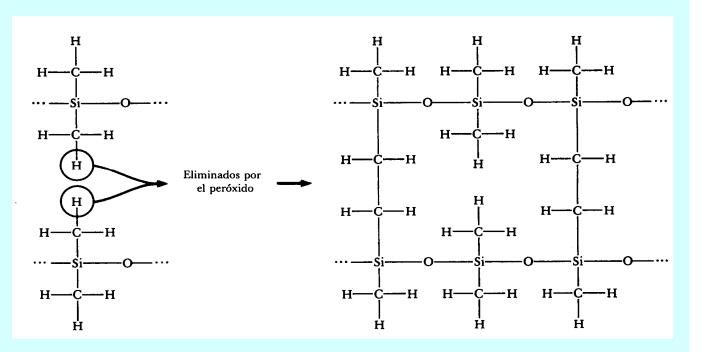
SBR copolímero de estireno-butadieno-ramdom

(suelas de calzado)

NBR cauchos de nitrilo

resistencia a disolventes (mangueras, juntas)

CR policloropreno (neopreno®).
(Vestimenta impermeable, juntas de dilatación,...)



Elastómeros

SI (siliconas)

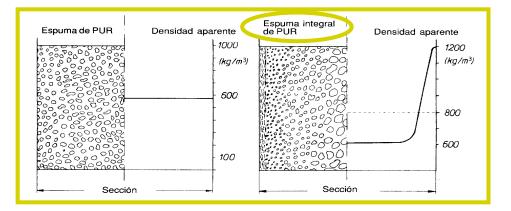
- el ligamiento cruzado: introducción de un peróxido
- T uso hasta 315 ºC
- precio elevado
- sellados y aislamientos

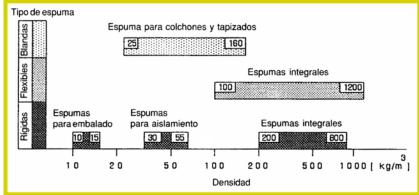
Lección 14. Polímeros

Espumas

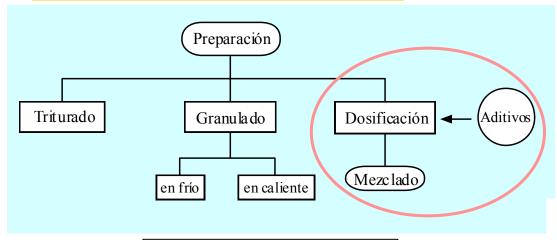
POLIURETANO

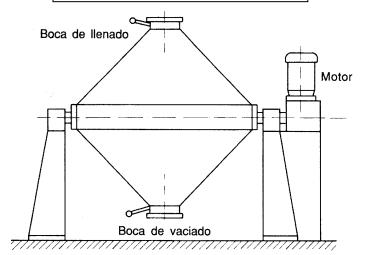
PUR (espumas)
R −NH −€OO −R


Flexible: estructuras de célula abierta (esponjas)


Semirrígida: estructura intermedia (asientos, apoyabrazos)

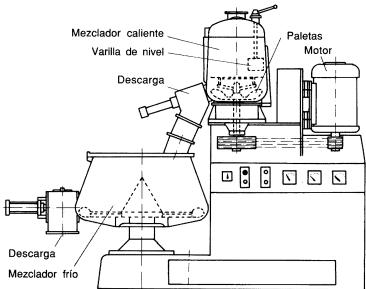
Rígida: estructura de célula cerrada (muebles, aislantes térmicos)





Fabricación de polímeros

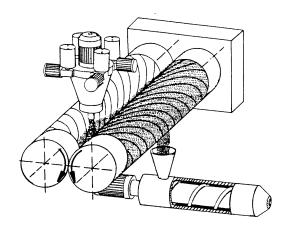
Preparación de la materia prima

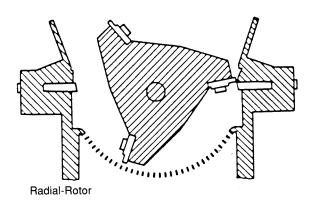

Mezclado en frío

ADITIVOS

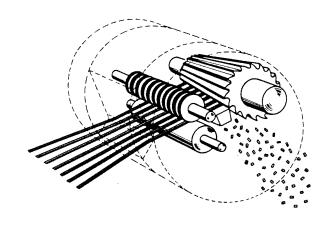
- Antioxidantes
- Estabilizantes a la luz
- Lubricantes
- Plastificantes
- Pigmentos
- Refuerzos y cargas

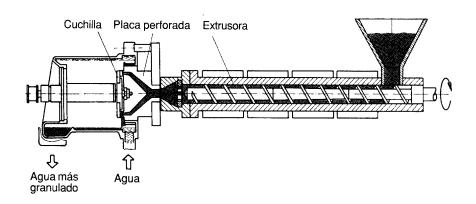
Mezclado en caliente





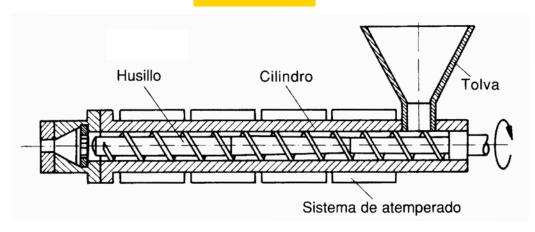
Fabricación de polímeros

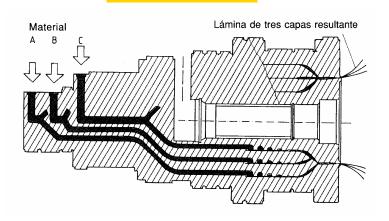

Plastificado



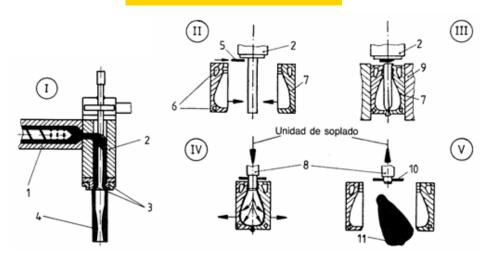
Triturado

Granulado

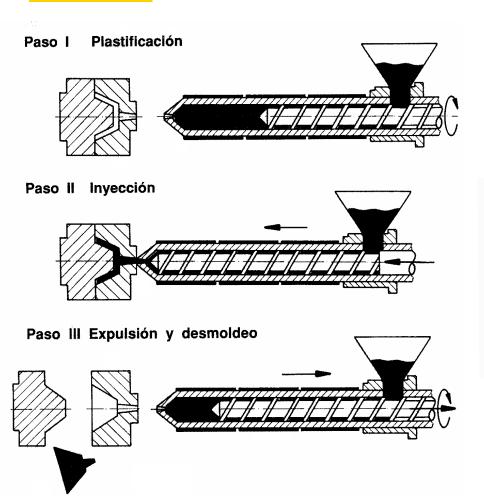


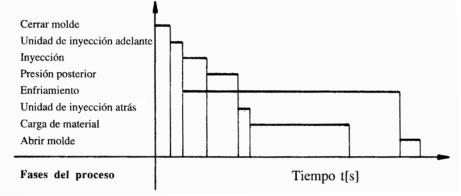


Fabricación de polímeros


Extrusión

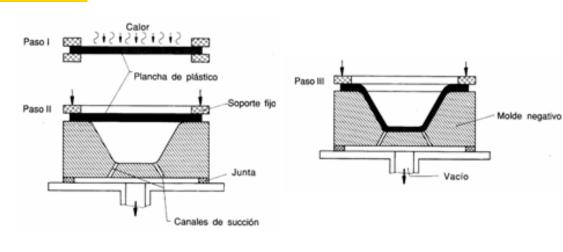
Extrusión-soplado

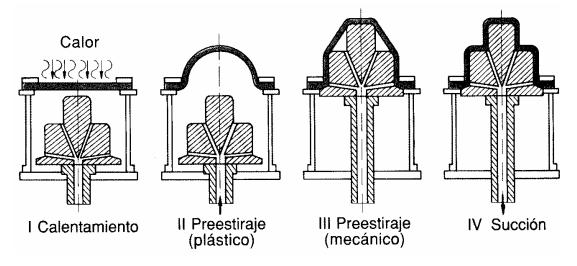




Fabricación de polímeros

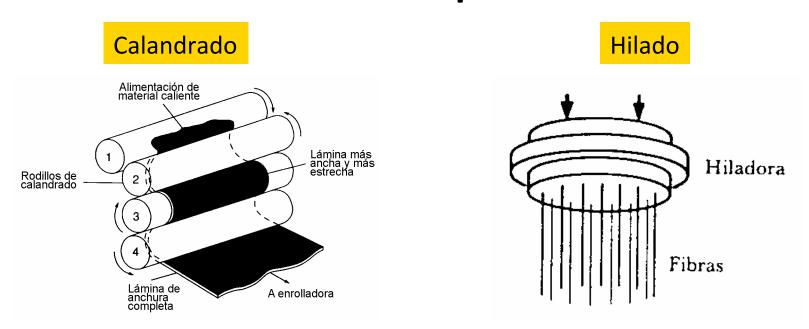
Inyección

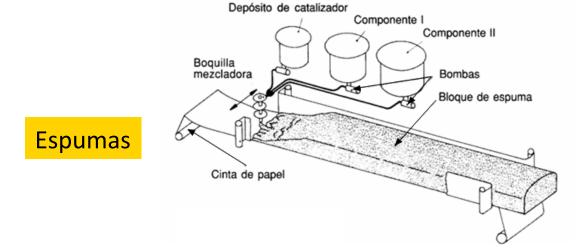




Fabricación de polímeros

Termoconformado





Lección 14. Polímeros

Fabricación de polímeros

