

ANALISIS DE PLACAS DE CIMENTACIÓN USANDO ELEMENTOS FINITOS TRIANGULARES Y MÓDULOS DE DEFORMACIÓN VOLUMÉTRICOS DE LOS ESTRATOS DEL SUELO

Juan Carlos Molano Toro⁽¹⁾

juan.molanotoro1@gmail.com

¹ Ingeniero Civil, Universidad de Medellín, Colombia PMP, PMI-SP, Especialista en Proyectos

Resumen

Se presenta un nuevo análisis 2-D de placas de cimentación sobre suelos estratificados con sus módulos de deformación volumétricos Mv(m²/Tf) usando una malla triangular de elementos finitos con matriz de rigidez de cada elemento de 9x9. Este método es una extensión de los modelos 1-D propuestos por Deméneghi[5] y Molano[10] para simular por retículas la placa. El cálculo del vector de cargas ocasionado por carga uniforme conocida q_o(Tf/m²) se realiza con un vector lleno de 9 filas (valores diferentes de cero). El cálculo de la Ecuación Matricial de Asentamientos [EMA][q_{zm}]= -[δ_{zi}], se realiza según Damy R. [4] usando cargas verticales q_{zm} uniformemente repartidas sobre superficies poligonales de cualquier forma. El ensamblaje y solución del sistema completo de ecuaciones lineales con incógnitas δ_{zi} , θ_{xi} , θ_{yi} , q_{zm} se realiza según Deméneghi[5] usando un método directo sin iteraciones. Se presentan dos alternativas de modelación de dovelas: a)Todas las dovelas rectangulares(formadas por triángulos) tienen su centroide en el centro de gravedad del rectángulo y b)igual que el caso a) para las dovelas interiores, pero las dovelas perimetrales tienen su centroide en el extremo medio del rectángulo que toca el perímetro de la placa. Se calcula la matriz de resortes Kss[δ_{zi} , θ_{xi} , θ_{yi}](placa de concreto+suelo) debajo de las cargas concentradas Pi, según Molano[15]. Se presenta un ejemplo numérico.

Palabras clave: *interacción suelo estructura, elementos finitos triangulares, módulo de deformación volumétrico, suelos estratificados*

Abstract

A new 2-D analysis of foundation plates on stratified soils with their volumetric deformation moduli Mv(m2/Tf) is presented using a triangular finite element mesh with a 9x9 stiffness matrix for each element. This method is an extension of the 1-D models proposed by Deméneghi[5] and Molano[10] to simulate the plate using grids. The calculation of the load vector caused by known uniform load qo(Tf/m2) is carried out with a vector filled with 9 rows (non-zero values). The calculation of the Settlement Matrix Equation [EMA][qzm]= -[δ zi], is carried out according to Damy R. [4] using vertical loads qzm uniformly distributed on polygonal surfaces of any shape. The assembly and solution of the complete system of linear equations with unknowns

 δzi , θxi , θyi , qzm is carried out according to Deméneghi[5] using a direct method without iterations. Two segment modeling alternatives are presented: a) All rectangular segments (formed by triangles) have their centroid in the center of gravity of the rectangle and b) the same as case a) for the interior segments, but the perimeter segments have their centroid at the middle end of the rectangle that touches the perimeter of the plate. The spring matrix Kss[δzi , θxi , θyi] (concrete plate+soil) is calculated under the concentrated loads Pi, according to Molano[15]. A numerical example is presented.

Keywords: soil structure interaction, triangular finite element, volumetric deformation moduli, stratified soils

1. Introducción

En el análisis de la interacción suelo-estructura de cimentaciones el autor evaluó los métodos propuestos por Deménegui[5] y Molano[10] que calculan asentamientos del terreno, momentos y fuerzas cortantes usando vigas 1-D en las dos direcciones para simular la retícula, y el método riguroso 2-D para el cálculo sólo de asentamientos del terreno según Gonzáles A. J. L.[6] que usa polígonos(rectángulos) para modelar tanto el suelo como la cimentación en concreto y se encontró que dichos métodos presentan excelentes ventajas por separado que permiten crear un nuevo método directo(más exacto) pero que difiere completamente de cada formulación, pues en el análisis 2-D se utilizan elementos finitos triangulares de 9 grados de libertad por elemento (δ_{z1} , θ_{x1} , θ_{y1} , δ_{z2} , θ_{x2} , θ_{y2} , δ_{z3} , θ_{x3} , θ_{y3}), un vector de cargas 9x1(todas las filas llenas) ocasionado por la carga conocida qo(Tf/m2) y la ecuación matricial de asentamientos [EMA] usando la metodología propuesta por Damy R.[4] para cargas verticales desconocidas q_{zm}(Tf/m2) sobre superficies poligonales de cualquier forma(en este caso triángulos). El ensamblaje y solución del sistema completo de ecuaciones lineales con incógnitas δ_{zi} , θ_{xi} , θ_{yi} , q_{zm} , se realiza según Deméneghi [4] usando un método directo sin iteraciones. Como valor agregado de esta investigación se calcula la matriz de resortes Kss[δ_{zi} , θ_{xi} , θ_{yi}] (placa de concreto+suelo) debajo de cada carga concentrada Pi, según Molano[15] cuyos valores pueden ser ingresados en el software ETABS, SAP2000, MIDAS, etc., para el cálculo de los asentamientos diferenciales de la Superestructura.

2. Derivación de Propiedades de Elementos

2.1. Matriz de Rigidez de 9x9 y Vector de Cargas de 9x1 del Elemento Finito Triangular

Para la matriz de rigidez 9x9 del elemento triangular, en los siguientes grados de libertad $\delta z1$, $\theta x1$, $\theta y1$, $\delta z2$, $\theta x2$, $\theta y2$, $\delta z3$, $\theta x3$ y $\theta y3$, en coordenadas globales se tomará el modelo presentado por Jeyachandrabose C. and Kirkhope J.[7] tal y como se muestra en la Fig. 1,

donde los nudos se ordenan en el sentido anti-horario es decir 1-2-3, con el eje 'Y' hacia arriba.

Fig. 1. Elemento Finito Triangular (3 gdl/nudo)

Para el vector de cargas 9x1(todas las filas llenas) en coordenadas globales ocasionado por carga uniformemente distribuída qo(Tf/m2) se tomará el modelo presentado por Butlin G.A. and Ford R.[3] pps 324 y 328 para los siguientes grados de libertad (F1- δ z1, F3- θ x1, F2- θ y1, F7- δ z2, F9- θ x2, F8- θ y2, F13- δ z3, F15- θ x3, F14- θ y3).

Cada triángulo contribuye, en coordenadas globales, a formar la Matriz de Rigidez total [K] del sistema y el vector de Cargas [Po] generado por cargas concentradas Pi y distribuidas qo(Tf/m2) conocidas y desconocidas q_{zm} según Molano[10] así:

Para el cálculo de las solicitaciones internas de los elementos triangulares se usará la siguiente expresión, tomada de Petyt M.[16] pps 213-214:

$$[\sigma] = [D][B][\alpha]$$
(2)

Siendo $[\sigma]^T$ =[Mx, My, Mxy, Qx, Qy] el vector de solicitaciones internas para cada elemento triangular.

2.2. Análisis de Asentamientos de Terreno. Cálculo de la matriz EMA

Se supone que el suelo situado debajo de la placa de cimentación se compone de uno o varios estratos horizontales, de propiedades uniformes dentro de cada uno de ellos, como lo es su Módulo de deformación Volumétrico (M_{vi} en unidades m^2/Tf). Estos estratos de espesores H_i, descansan sobre una base poco compresible.

A partir de la anterior estratigrafía, sus condiciones hidráulicas y propiedades esfuerzodeformación del subsuelo (M_{vi}), <u>datos proporcionados únicamente por el Ingeniero</u> <u>Geotecnista</u>, se obtiene la matriz de desplazamientos unitarios del suelo con ayuda de al Ecuación Matricial de Asentamientos (EMA), mediante el cálculo de los coeficientes de

influencia lijk que resultan de aplicar presiones unitarias (q_{zm} =1.0) sobre superficies poligonales(dovelas) de cualquier forma según Damy R.[4], en este caso triángulos. Se considera el polígono(dovela) de la Fig. 2 y se desea obtener el esfuerzo q_z en un punto que se encuentra a una profundidad z bajo el punto P.

Si se conoce la integral de q_{zm} sobre un triángulo de forma cualquiera para el punto situado a una profundidad z bajo uno de sus vértices, se puede conocer la integral sobre el polígono, ya que será la suma algébrica de las contribuciones de cada uno de los triángulos. Obsérvese que la numeración de los nudos debe seguir el sentido antihorario. (ver Fig. 2).

Fig. 2 Área poligonal uniformemente cargada Damy R.[4].

Es necesario enumerar todos los vértices del área(dovela) cargada, conociendo las coordenadas Xi y Yi de cada uno de los vértices tal y como se muestra en la Figura 3.

Fig. 3 Área triangular uniformemente cargada

Cada triángulo de la Fig. 2 hace su contribución en el cálculo de las presiones q_{zm} tal y como se indican en la Fig. 3 y en el procedimiento presentado por Damy R.[4] en las págs 84-85 para cada valor de χ según el caso, en todo tipo de suelos (aluviales cuaternarios, residuales, coluviales, etc):

 χ =1.5(Westergaard), para un suelo fuertemente estratificado reforzado por estratos horizontales múltiples e indeformables v_s=0.0.

 χ =2.0(Fróhlich), suelo estratificado con estratos de diferentes deformabilidades.

 χ =3.0(Boussinesq), suelo homogéneo e isótropo.

 χ =4.0(Fróhlich)], suelo homogéneo en que la compresibilidad se reduce con la profundidad, como en el caso de las arenas.

El asentamiento total δ_{zi} debajo del punto i será:

$$\begin{array}{c} p & m \\ -\delta_{zi} = (\sum M_{vij}. H_j . \sum I_{ijk}.q_{zk}) \\ j=1 & k=1 \end{array}$$
(3)

siendo: p = el número de estratos del subsuelo.

m = el número de dovelas (rectángulos conformado por triángulos)

Por lo tanto:

$$[\boldsymbol{\delta}_{zi}]_{mx1} = [\boldsymbol{\delta}_{ik}]_{mxm} [q_z]_{mx1} = [EMA]_{mxm} [q_z]_{mx1}$$
(4)

De esta forma la matriz [EMA] está en 2-D, pues toma en cuenta el sentido corto de la placa de cimentación tal y como lo define Zeevaert[18] en la pág 52.

Se presentan dos alternativas de modelación de dovelas: a)Todas las dovelas rectangulares(formadas por triángulos) tienen su centroide en el centro de gravedad del rectángulo(opción dovelas=2) y b)igual que el caso a) para las dovelas interiores, pero las dovelas perimetrales tienen su centroide en el extremo medio del rectángulo que toca el perímetro de la placa(opción dovelas=1).

Zeevaert[18] recomienda realizar dos análisis independientes, que conciernen al módulo de elasticidad del concreto Ec de la placa de cimentación:

- a) Al terminarse la construcción, corto plazo, usar como módulo de elasticidad E=Ec/2.0
- b) A largo plazo, usar como módulo de elasticidad E=Ec/3.0

La placa de cimentación debe diseñarse para momentos flectores y fuerzas cortantes (espesor y refuerzos longitudinal y transversal) en la situación más desfavorable que resulte de estos dos análisis.

2.3. Compatibilidad de Desplazamientos

Se establece la compatibilidad de desplazamientos con el procedimiento directo sugerido por Deméneghi[5] y verificado por Molano[10] donde los asentamientos del suelo δ_{zi} , *Ec.* (4), se sustituyen en el sistema estructural de la *Ec.* (1). En esta forma desaparecen como

incógnitas los asentamientos δ_{zi} y quedan únicamente como incógnitas los giros θ_{xi} , θ_{yi} y las presiones del suelo q_{zm} . El número de ecuaciones lineales es igual al número de incógnitas, con lo que ya es posible resolver este sistema. Luego usando la *Ec. (4)* se obtienen los asentamientos del suelo δ_{zi} .

3. Presentación de Resultados con un Ejemplo Numérico

Se tomará el ejemplo de Zeevaert[18] con opción 2 para las dovelas. Los datos de entrada para modelo 2-D están en la Tabla 1 y Figuras 4 y 5. Los datos de salida del análisis 2-D se muestran en las Tablas 2 a 4 y Figuras 6 a 8.

	/elas=36	NUDOXX	15	17	19	21	23	25	41	43	45	47	49	51	67	69	71	73	75	77	93	95	97	66	101	103	119	121	123	125	127	129	145	147	149	151	153	155
	n_do	DOV	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	SO	node3	16	17	18	19	20	21	22	23	24	25	26	28	29	30	31	32	33	34	35	36	37	38	39	158	159	160	161	162	163	164	165	166	167	168	169	
	MENT	ode	15	16	17	18	19	20	21	22	23	24	25	27	28	29	30	31	32	33	34	35	36	37	38	157	158	159	160	161	162	163	164	165	166	167	168	
mplo]	OS ELE	node1	3	4	5	6	7	8	9	10	11	12	13	15	16	17	18	19	20	21	22	23	24	25	26	145	146	147	148	149	150	151	152	153	154	155	156	
el Eje	DAT	ele	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	277	278	279	280	281	282	283	284	285	286	287	288	
ada d																																						
e Entr	S	node3	2		4	5	9	7	80	6	10	11	12	13	15	16	17	8	ŧ	20	21	22	ន	24	25	26	28	29	30	31	32	33	34	35	36	37	38	
atos d	EMENT	node2	14	15	16	17	18	19	20	21	22	23	24	25	27	28	29	R	31	32	33	34	35	36	37	38	8	41	42	43	4	\$	46	47	8	49	ន	
ola 1. d	ATOS EL	node1	1	2	3	4	2	9	7	8	6	10	11	12	14	15	16	17	18	19	20	21	22	23	24	25	27	28	29	30	31	32	33	34	35	36	37	
Tal	õ	ele	1	2	9	4	2	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20	ដ	2	23	24	25	26	27	28	ୟ	R	31	32	33	¥	35	
	SOS	y(m)	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00										
	INN SO	x(m)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00	24.00										
	DATC	opnu	1	2	e	4	2	9	7	80	6	10	11	12	13	157	158	159	160	161	162	163	164	165	166	167	168	169										

ICEIG

XVIIICCG / VIICRG-V. Del Cauca

7

AVIIICCG / VIICRG-V. **Del Cauca**

ele 25 to ele 26, ele 37 to de 38, de 169 to ele 170, de 181 to ele 182, DOV = S NUDO = (3) INTERVALOS = 4:ele 9 to ele 10, ele 21 to ele 22, ele 153 to ele 154, ele 165 to ele 166, ele 11 to ele 12, ele 23 to de 24, de 155 to ele 156, de 167 to ele 168, DOV = 4 NUDO = (2) INTERVALOS = 4:ele 7 to ele 8, de 19 to de 20, ele 151 to ele 152, de 163 to ele 164, DOV = 3 NUDO = [9] NTERVALOS = 4 :ele 5 to ele 6, ele 17 to ele 18, ele 149 to ele 150, ele 161 to ele 162, ele 3 to ele 4, de 15 to de 16, ele 147 to ele 148, 6 NUDO=25 INTERVALOS= 4 7 NUDO=(4)INTERVALOS= 4 =NOQ DOV=

27 to ele 28, ele 39 to de 40, de 171 to ele 172, de 183 to ele 184, DOV= 8 NUDO=43 INTERVALOS= 4 ele

29 to ele 30, ele 41 to ele 42, de 173 to ele 174, de 185 to ele 186, 9 NUDO=4SINTERVALOS= 4 =100C ele

ele 31 to ele 32, ele 43 to de 44, de 175 to ele 176, de 187 to ele 188, 4 DOV= 10 NUDO=(47)INTERVALOS=

33 to ele 34, ele 45 to de 46, de 177 to ele 178, de 189 to ele 190, 4 DOV= 11 NUDO=49 INTERVALOS= ele

35 to ele 36, ele 47 to de 48, de 179 to ele 180, de 191 to ele 192, DOV= 12 NUDO=[51]INTERVALOS= 4: ele

ele 49 to ele 50, ele 61 to de 62, de 193 to ele 194, de 205 to ele 206, ï DOV= 13 NUDO=(67)ENTERVALOS=

V= 14 NUDO=(69 INTERVALOS= 4 : 51 to ele 52, ele 63 to de 64, de 195 to ele 196, de 207 to ele 208, DOV= 14 NUDO=69 INTERVALOS= ele

53 to ele 54, ele 65 to de 66, de 197 to ele 198, de 209 to ele 210, DOV= 15 NUDO=(71)INTERVALOS= 4: ele

ele 55 to ele 56, ele 67 to de 68, de 199 to ele 200, de 211 to ele 212, 4 DOV= 16 NUDO=73INTERVALOS=

DOV= 17 NUDO=(73)INTERVALOS= 4: ele 57 to ele 58, ele 69 to de 70, ele 201 to ele 202, ele 213 to ele 214, ele

59 to ele 60, ele 71 to de 72, ele 203 to ele 204, ele 215 to ele 216. DOV= 18 NUDO=(77)INTERVALOS= 4: ę

8

ele 73 to ele 74, ele 85 to ele 86, ele 217 to ele 218, ele 229 to ele 230. 4 DOV= 19 NUDO=(93)INTERVALOS=

DOV= 1 NUDO=(15)NTERVALOS= 4: ele 1 to ele 2, ele 13 to ele 14, ele 145 to ele 158,

2 NUDO=(17)INTERVALOS= 4

=NOG

DOV= 20 NUDO=<u>95</u>INTERVALOS= 4 : ele 75 to ele 76, ele 87 to ele 88, ele 219 to ele 220, ele 231 to ele 232,

de 159 to ele 160.

DOV= 21 NUDO=97/INTERVALOS= 4 : ele 77 to ele 78, ele 89 to ele 90, ele 221 to de 222, ele 233 to ele 234, DOV= 21 NUDO=(97)ENTERVALOS=

DOV= 22 NUDO=69]INTERVALOS= 4 : ele 79 to ele 80, ele 91 to ele 92, ele 223 to de 224, ele 235 to de 236.

DOV= 23 NUDO=(0) INTERVALOS= 4 : ele 81 to ele 82, ele 93 to ele 94, ele 225 to de 226, ele 237 to de 238,

DOV= 24 NUDO=(031NTERVALOS= 4: ele 83 to ele 84, ele 95 to ele 96, ele 227 to ele 228, ele 239 to ele 240,

ele 97 to ele 98, ele 109 to de 110, ele 241 to ele 242, ele 253 to ele 254 4 DOV= 25 NUDO=(119)INTERVALOS=

ICEIG

DOV= 26 NUDO=(12))INTERVALOS= 4 : ele 99 to ele 100, ele 111 to ele 112, ele 243 to ele 244, ele 255 to ele 256,

ele 101 to ele 102, de 113 to ele 114, de 245 to de 246, de 257 to de 258 4 DOV= 27 NUDO=(23 INTERVALOS=

ele 103 to ele 104, ele 115 to ele 116, ele 247 to ele 248, ele 259 to ele 260, DOV= 28 NUDO=(25)INTERVALOS= 4

ele 105 to ele 106, de 117 to ele 118, de 249 to de 250, de 261 to de 262, DOV= 29 NUDO=(27)INTERVALOS=

ele 107 to ele 108, ele 119 to ele 120, ele 251 to ele 252, ele 263 to ele 264 DOV= 30 NUDO=(129 INTERVALOS= 4

ele 121 to ele 122, ele 133 to ele 134, ele 265 to ele 266, ele 277 to ele 278 DOV= 31 NUDO=(45)INTERVALOS= 4

ele 123 to ele 124, de 135 to ele 136, de 267 to de 268, de 279 to de 280 DOV= 32 NUDO=(47)INTERVALOS=

ele 125 to ele 126, de 137 to ele 138, de 269 to de 270, de 281 to de 282 4 DOV= 33 NUDO=(49)INTERVALOS=

ele 127 to ele 128, ele 139 to ele 140, ele 271 to ele 272, ele 283 to ele 284 DOV= 34 NUDO+(15) INTERVALOS=

ele 129 to ele 130, ele 141 to ele 142, ele 273 to ele 274, ele 285 to ele 286 DOV= 35 NUDO=(153)INTERVALOS=

ele 131 to ele 132, de 143 to ele 144, de 275 to de 276, de 287 to de 288, DOV= 36 NUDO=155 INTERVALOS= 4

[EMA]_{36x36} (simétrica) Matriz Tabla 2.

EMA[13][1]=0.000370 EMA[14][1]=0.000345 EMA[15][1]=0.000284 EMA[16][1]=0.000215 EMA[17][1]=0.000155 EMA[18][1]=0.000110 EMA[31][1]=0.000027 EMA[32][1]=0.000027 EMA[33][1]=0.000025 EMA[34][1]=0.000023 EMA[35][1]=0.000021 EMA[36][1]=0.000018 EMA[25][1]=0.000057 EMA[26][1]=0.000056 EMA[27][1]=0.000052 EMA[28][1]=0.000046 EMA[29][1]=0.000039 EMA[30][1]=0.000033 EMA[19][1]=0.000135 EMA[20][1]=0.000130 EMA[21][1]=0.000116 EMA[22][1]=0.000097 EMA[23][1]=0.000078 EMA[24][1]=0.000061 EMA[7][1]=0.001333 EMA[8][1]=0.001066 EMA[9][1]=0.000697 EMA[10][1]=0.000440 EMA[11][1]=0.000276 EMA[12][1]=0.000174 EMA[2][2]=0.007317 EMA[3][2]=0.002932 EMA[4][2]=0.001132 EMA[5][2]=0.000606 EMA[6][2]=0.000349 EMA[7][2]=0.001066 EMA[1][1]=0.007317 EMA[2][1]=0.002932 EMA[3][1]=0.001132 EMA[4][1]=0.000606 EMA[5][1]=0.000349 EMA[6][1]=0.000209

EMA[14][2]=0.000370 EMA[15][2]=0.000345 EMA[16][2]=0.000284 EMA[17][2]=0.000215 EMA[18][2]=0.000155 EMA[19][2]=0.000130 EMA[20][2]=0.000135 EMA[21][2]=0.000130 EMA[22][2]=0.000116 EMA[23][2]=0.000097 EMA[24][2]=0.000078 EMA[25][2]=0.000056 EMA[26][2]=0.000057 EMA[27][2]=0.000056 EMA[28][2]=0.000052 EMA[29][2]=0.000046 EMA[30][2]=0.000039 EMA[31][2]=0.000027 EMA[8][2]=0.001333 EMA[9][2]=0.001066 EMA[10][2]=0.000697 EMA[11][2]=0.000440 EMA[12][2]=0.000276 EMA[13][2]=0.000345 EMA[32][2]=0.000027 EMA[33][2]=0.000027 EMA[34][2]=0.000025 EMA[35][2]=0.000023 EMA[36][2]=0.000021

ICE

EMA[15][3]=0.000370 EMA[16][3]=0.000345 EMA[17][3]=0.000284 EMA[18][3]=0.000215 EMA[19][3]=0.000116 EMA[20][3]=0.000130 EMA[9][3]=0.001333 EMA[10][3]=0.001066 EMA[11][3]=0.000697 EMA[12][3]=0.000440 EMA[13][3]=0.000284 EMA[14][3]=0.000345 EMA[3][3]=0.007317 EMA[4][3]=0.002932 EMA[5][3]=0.001132 EMA[6][3]=0.000606 EMA[7][3]=0.000697 EMA[8][3]=0.001066

EMA[21][3]=0.000135 EMA[22][3]=0.000130 EMA[23][3]=0.000116 EMA[24][3]=0.000097 EMA[25][3]=0.000052 EMA[26][3]=0.000056 EMA[27][3]=0.000057 EMA[28][3]=0.000056 EMA[29][3]=0.000052 EMA[30][3]=0.000046 EMA[31][3]=0.000025 EMA[32][3]=0.000027 EMA[4][4]=0.007317 EMA[5][4]=0.002932 EMA[6][4]=0.001132 EMA[7][4]=0.000440 EMA[8][4]=0.000697 EMA[9][4]=0.001066 EMA[33][3]=0.000027 EMA[34][3]=0.000027 EMA[35][3]=0.000025 EMA[36][3]=0.000023

EMA[16][4]=0.000370 EMA[17][4]=0.000345 EMA[18][4]=0.000284 EMA[19][4]=0.000097 EMA[20][4]=0.000116 EMA[21][4]=0.000130 EMA[22][4]=0.000135 EMA[23][4]=0.000130 EMA[24][4]=0.000116 EMA[25][4]=0.000046 EMA[26][4]=0.000052 EMA[27][4]=0.000056 EMA[10][4]=0.001333 EMA[11][4]=0.001066 EMA[12][4]=0.000697 EMA[13][4]=0.000215 EMA[14][4]=0.000284 EMA[15][4]=0.000345 EMA[28][4]=0.000057 EMA[29][4]=0.000056 EMA[30][4]=0.000052 EMA[31][4]=0.000023 EMA[32][4]=0.000025 EMA[33][4]=0.000027 EMA[34][4]=0.000027 EMA[35][4]=0.000027 EMA[36][4]=0.000025

EMA[17][5]=0.000370 EMA[18][5]=0.000345 EMA[19][5]=0.000078 EMA[20][5]=0.000097 EMA[21][5]=0.000116 EMA[22][5]=0.000130 EMA[23][5]=0.000135 EMA[24][5]=0.000130 EMA[25][5]=0.000039 EMA[26][5]=0.000046 EMA[27][5]=0.000052 EMA[28][5]=0.000056 EMA[11][5]=0.001333 EMA[12][5]=0.001066 EMA[13][5]=0.000155 EMA[14][5]=0.000215 EMA[15][5]=0.000284 EMA[16][5]=0.000345 EMA[29][5]=0.000057 EMA[30][5]=0.000056 EMA[31][5]=0.000021 EMA[32][5]=0.000023 EMA[33][5]=0.000025 EMA[34][5]=0.000027 EMA[5][5]=0.007317 EMA[6][5]=0.002932 EMA[7][5]=0.000276 EMA[8][5]=0.000440 EMA[9][5]=0.000697 EMA[10][5]=0.001066 EMA[35][5]=0.000027 EMA[36][5]=0.000027

EMA[18][6]=0.000370 EMA[19][6]=0.000061 EMA[20][6]=0.000078 EMA[21][6]=0.000097 EMA[22][6]=0.000116 EMA[23][6]=0.000130 EMA[24][6]=0.000135 EMA[25][6]=0.000033 EMA[26][6]=0.000039 EMA[27][6]=0.000046 EMA[28][6]=0.000052 EMA[29][6]=0.000056 EMA[12][6]=0.001333 EMA[13][6]=0.000110 EMA[14][6]=0.000155 EMA[15][6]=0.000215 EMA[16][6]=0.000284 EMA[17][6]=0.000345 EMA[30][6]=0.000057 EMA[31][6]=0.000018 EMA[32][6]=0.000021 EMA[33][6]=0.000023 EMA[34][6]=0.000025 EMA[35][6]=0.000027 EMA[6][6]=0.007317 EMA[7][6]=0.000174 EMA[8][6]=0.000276 EMA[9][6]=0.000440 EMA[10][6]=0.000697 EMA[11][6]=0.001066 EMA[36][6]=0.000027

EMA[7][7]=0.007317 EMA[8][7]=0.002932 EMA[9][7]=0.001132 EMA[10][7]=0.000606 EMA[11][7]=0.000349 EMA[12][7]=0.000209

Santiago de Cali

Tabla 2. Matriz [EMA]_{36x36} (simétrica) (Cont)

EMA[19][7]=0.000370 EMA[20][7]=0.000345 EMA[21][7]=0.000284 EMA[22][7]=0.000215 EMA[23][7]=0.000155 EMA[24][7]=0.000110 EMA[31][7]=0.000057 EMA[32][7]=0.000056 EMA[33][7]=0.000052 EMA[34][7]=0.000046 EMA[35][7]=0.000039 EMA[36][7]=0.000033 EMA[14][8]=0.001333 EMA[15][8]=0.001066 EMA[16][8]=0.000697 EMA[17][8]=0.000440 EMA[18][8]=0.000276 EMA[19][8]=0.000345 EMA[20][8]=0.000370 EMA[21][8]=0.000345 EMA[22][8]=0.000284 EMA[23][8]=0.000215 EMA[24][8]=0.000155 EMA[25][8]=0.000130 EMA[26][8]=0.000135 EMA[27][8]=0.000130 EMA[28][8]=0.000116 EMA[29][8]=0.000097 EMA[30][8]=0.000078 EMA[31][8]=0.000056 EMA[13][7]=0.001333 EMA[14][7]=0.001066 EMA[15][7]=0.000697 EMA[16][7]=0.000440 EMA[17][7]=0.000276 EMA[18][7]=0.000174 EMA[25][7]=0.000135 EMA[26][7]=0.000130 EMA[27][7]=0.000116 EMA[28][7]=0.000097 EMA[29][7]=0.000078 EMA[20][7]=0.00001 EMA[8][8]=0.007317 EMA[9][8]=0.002932 EMA[10][8]=0.001132 EMA[11][8]=0.000606 EMA[12][8]=0.000349 EMA[13][8]=0.001066 EMA[32][8]=0.000057 EMA[33][8]=0.000056 EMA[34][8]=0.000052 EMA[35][8]=0.000046 EMA[36][8]=0.000039

EMA[15][9]=0.001333 EMA[16][9]=0.001066 EMA[17][9]=0.000697 EMA[18][9]=0.000440 EMA[19][9]=0.000284 EMA[20][9]=0.000345 EMA[21][9]=0.000370 EMA[22][9]=0.000345 EMA[23][9]=0.000284 EMA[24][9]=0.000215 EMA[25][9]=0.000116 EMA[26][9]=0.000130 EMA[27][9]=0.000135 EMA[28][9]=0.000130 EMA[29][9]=0.000116 EMA[30][9]=0.000097 EMA[31][9]=0.000052 EMA[32][9]=0.000056 EMA[9][9]=0.007317 EMA[10][9]=0.002932 EMA[11][9]=0.001132 EMA[12][9]=0.000606 EMA[13][9]=0.000697 EMA[14][9]=0.001066 EMA[33][9]=0.000057 EMA[34][9]=0.000056 EMA[35][9]=0.000052 EMA[36][9]=0.000046

EMA[22][10]=0.000370 EMA[23][10]=0.000345 EMA[24][10]=0.000284 EMA[25][10]=0.000097 EMA[26][10]=0.000116 EMA[27][10]=0.000130 EMA[10][10]=0.007317 EMA[11][10]=0.002932 EMA[12][10]=0.001132 EMA[13][10]=0.000440 EMA[14][10]=0.000697 EMA[15][10]=0.001066 EMA[16][10]=0.001333 EMA[17][10]=0.001066 EMA[18][10]=0.000697 EMA[19][10]=0.000215 EMA[20][10]=0.000284 EMA[21][10]=0.000345 MA[28][10]=0.000135 EMA[29][10]=0.000130 EMA[30][10]=0.000116 EMA[31][10]=0.000046 EMA[32][10]=0.000052 EMA[33][10]=0.000056 EMA[34][10]=0.000057 EMA[35][10]=0.000056 EMA[36][10]=0.000052

EMA[23][11]=0.000370 EMA[24][11]=0.000345 EMA[25][11]=0.000078 EMA[26][11]=0.000097 EMA[27][11]=0.000116 EMA[28][11]=0.000130 EMA[11][11]=0.007317 EMA[12][11]=0.002932 EMA[13][11]=0.000276 EMA[14][11]=0.000440 EMA[15][11]=0.000697 EMA[16][11]=0.001066 EMA[17][11]=0.001333 EMA[18][11]=0.001066 EMA[19][11]=0.000155 EMA[20][11]=0.000215 EMA[21][11]=0.000284 EMA[22][11]=0.000345 EMA[29][11]=0.000135 EMA[30][11]=0.000130 EMA[31][11]=0.000039 EMA[32][11]=0.000046 EMA[33][11]=0.000052 EMA[34][11]=0.000056 EMA[35][11]=0.000057 EMA[36][11]=0.000056

EMA[18][12]=0.001333 EMA[19][12]=0.000110 EMA[20][12]=0.000155 EMA[21][12]=0.000215 EMA[22][12]=0.000284 EMA[23][12]=0.000345 EMA[24][12]=0.000370 EMA[25][12]=0.000061 EMA[26][12]=0.000078 EMA[27][12]=0.000097 EMA[28][12]=0.000116 EMA[29][12]=0.000130 EMA[12][12]=0.007317 EMA[13][12]=0.000174 EMA[14][12]=0.000276 EMA[15][12]=0.000440 EMA[16][12]=0.000697 EMA[17][12]=0.001066 EMA[30][12]=0.000135 EMA[31][12]=0.000033 EMA[32][12]=0.000039 EMA[33][12]=0.000046 EMA[34][12]=0.000052 EMA[35][12]=0.000056 EMA[36][12]=0.000057

EMA[25][13]=0.000370 EMA[26][13]=0.000345 EMA[27][13]=0.000284 EMA[28][13]=0.000215 EMA[29][13]=0.000155 EMA[30][13]=0.000110 EMA[20][14]=0.001333 EMA[21][14]=0.001066 EMA[22][14]=0.000697 EMA[23][14]=0.000440 EMA[24][14]=0.000276 EMA[25][14]=0.000345 EMA[13][13]=0.007317 EMA[14][13]=0.002932 EMA[15][13]=0.001132 EMA[16][13]=0.000606 EMA[17][13]=0.000349 EMA[18][13]=0.000209 EMA[19][13]=0.001333 EMA[20][13]=0.001066 EMA[21][13]=0.000697 EMA[22][13]=0.000440 EMA[23][13]=0.000276 EMA[24][13]=0.000174 EMA[31][13]=0.000135 EMA[32][13]=0.000130 EMA[33][13]=0.000116 EMA[34][13]=0.000097 EMA[35][13]=0.000078 EMA[36][13]=0.000061 EMA[14][14]=0.007317 EMA[15][14]=0.002932 EMA[16][14]=0.001132 EMA[17][14]=0.000606 EMA[18][14]=0.000349 EMA[19][14]=0.001066 EMA[26][14]=0.000370 EMA[27][14]=0.000345 EMA[28][14]=0.000284 EMA[29][14]=0.000215 EMA[30][14]=0.000155 EMA[31][14]=0.000130 EMA[32][14]=0.000135 EMA[33][14]=0.000130 EMA[34][14]=0.000116 EMA[35][14]=0.000097 EMA[36][14]=0.000078

ICE

Tabla 2. Matriz [EMA]36x36 (simétrica) (Cont)

25 [15]=0.001333 EMA[22][15]=0.001066 EMA[23][15]=0.000697 EMA[24][15]=0.000440 EMA[25][15]=0.000284 EMA[26][15]=0.000345 EMA[27][15]=0.000370 EMA[28][15]=0.000345 EMA[29][15]=0.000284 EMA[30][15]=0.000215 EMA[31][15]=0.000116 EMA[32][15]=0.000130 EMA[15][15]=0.007317 EMA[16][15]=0.002932 EMA[17][15]=0.001132 EMA[18][15]=0.000606 EMA[19][15]=0.000697 EMA[20][15]=0.001066 EMA[33][15]=0.000135 EMA[34][15]=0.000130 EMA[35][15]=0.000116 EMA[36][15]=0.000097

EMA[16][16]=0.007317 EMA[17][16]=0.002932 EMA[18][16]=0.001132 EMA[19][16]=0.000440 EMA[20][16]=0.000697 EMA[21][16]=0.001066 EMA[22][16]=0.001333 EMA[23][16]=0.001066 EMA[24][16]=0.000697 EMA[25][16]=0.000215 EMA[26][16]=0.000284 EMA[27][16]=0.000345 EMA[28][16]=0.000370 EMA[29][16]=0.000345 EMA[30][16]=0.000284 EMA[31][16]=0.000097 EMA[32][16]=0.000116 EMA[33][16]=0.000130 EMA[34][16]=0.000135 EMA[35][16]=0.000130 EMA[36][16]=0.000116

EMA[17][17]=0.007317 EMA[18][17]=0.002932 EMA[19][17]=0.000276 EMA[20][17]=0.000440 EMA[21][17]=0.000697 EMA[22][17]=0.001066 EMA[23][17]=0.001333 EMA[24][17]=0.001066 EMA[25][17]=0.000155 EMA[26][17]=0.000215 EMA[27][17]=0.000284 EMA[28][17]=0.000345 EMA[29][17]=0.000370 EMA[30][17]=0.000345 EMA[31][17]=0.000078 EMA[32][17]=0.000097 EMA[33][17]=0.000116 EMA[34][17]=0.000130 EMA[35][17]=0.000135 EMA[36][17]=0.000130

EMA[18][18]=0.007317 EMA[19][18]=0.000174 EMA[20][18]=0.000276 EMA[21][18]=0.000440 EMA[22][18]=0.000697 EMA[23][18]=0.001066 EMA[24][18]=0.001333 EMA[25][18]=0.000110 EMA[26][18]=0.000155 EMA[27][18]=0.000215 EMA[28][18]=0.000284 EMA[29][18]=0.000345 EMA[30][18]=0.000370 EMA[31][18]=0.000061 EMA[32][18]=0.000078 EMA[33][18]=0.000097 EMA[34][18]=0.000116 EMA[35][18]=0.000130 EMA[36][18]=0.000135

EMA[31][19]=0.000370 EMA[32][19]=0.000345 EMA[33][19]=0.000284 EMA[34][19]=0.000215 EMA[35][19]=0.000155 EMA[36][19]=0.000110 EMA[19][19]=0.007317 EMA[20][19]=0.002932 EMA[21][19]=0.001132 EMA[22][19]=0.000606 EMA[23][19]=0.000349 EMA[24][19]=0.000209 EMA[25][19]=0.001333 EMA[26][19]=0.001066 EMA[27][19]=0.000697 EMA[28][19]=0.000440 EMA[29][19]=0.000276 EMA[30][19]=0.000174 EMA[20][20]=0.007317 EMA[21][20]=0.002932 EMA[22][20]=0.001132 EMA[23][20]=0.000606 EMA[24][20]=0.000349 EMA[25][20]=0.001066 EMA[26][20]=0.001333 EMA[27][20]=0.001066 EMA[28][20]=0.000697 EMA[29][20]=0.000440 EMA[30][20]=0.000276 EMA[31][20]=0.000345 EMA[32][20]=0.000370 EMA[33][20]=0.000345 EMA[34][20]=0.000284 EMA[35][20]=0.000215 EMA[36][20]=0.000155 EMA[21][21]=0.007317 EMA[22][21]=0.002932 EMA[23][21]=0.001132 EMA[24][21]=0.000606 EMA[25][21]=0.000697 EMA[26][21]=0.001066 EMA[27][21]=0.001333 EMA[28][21]=0.001066 EMA[29][21]=0.000697 EMA[30][21]=0.000440 EMA[31][21]=0.000284 EMA[32][21]=0.000345 EMA[33][21]=0.000370 EMA[34][21]=0.000345 EMA[35][21]=0.000284 EMA[36][21]=0.000215

EMA[22][22]=0.007317 EMA[23][22]=0.002932 EMA[24][22]=0.001132 EMA[25][22]=0.000440 EMA[26][22]=0.000697 EMA[27][22]=0.001066 EMA[28][22]=0.001333 EMA[29][22]=0.001066 EMA[30][22]=0.000697 EMA[31][22]=0.000215 EMA[32][22]=0.000284 EMA[33][22]=0.000345 EMA[34][22]=0.000370 EMA[35][22]=0.000345 EMA[36][22]=0.000284

EMA[23][23]=0.007317 EMA[24][23]=0.002932 EMA[25][23]=0.000276 EMA[26][23]=0.000440 EMA[27][23]=0.000697 EMA[28][23]=0.001066 EMA[29][23]=0.001333 EMA[30][23]=0.001066 EMA[31][23]=0.000155 EMA[32][23]=0.000215 EMA[33][23]=0.000284 EMA[34][23]=0.000345 EMA[35][23]=0.000370 EMA[36][23]=0.000345

EMA[24][24]=0.007317 EMA[25][24]=0.000174 EMA[26][24]=0.000276 EMA[27][24]=0.000440 EMA[28][24]=0.000697 EMA[29][24]=0.001066 EMA[30][24]=0.001333 EMA[31][24]=0.000110 EMA[32][24]=0.000155 EMA[33][24]=0.000215 EMA[34][24]=0.000284 EMA[35][24]=0.000345 EMA[36][24]=0.000370

EMA[31][25]=0.001333 EMA[32][25]=0.001066 EMA[33][25]=0.000697 EMA[34][25]=0.000440 EMA[35][25]=0.000276 EMA[36][25]=0.000174 EMA[25][25]=0.007317 EMA[26][25]=0.002932 EMA[27][25]=0.001132 EMA[28][25]=0.000606 EMA[29][25]=0.000349 EMA[30][25]=0.000209 EMA[26][26]=0.007317 EMA[27][26]=0.002932 EMA[28][26]=0.001132 EMA[29][26]=0.000606 EMA[30][26]=0.000349 EMA[31][26]=0.001066

Sociedad

de

iana

ecnia

ICEIG

11

ICEIG

EMA[27][27]=0.007317 EMA[28][27]=0.002932 EMA[29][27]=0.001132 EMA[30][27]=0.000606 EMA[31][27]=0.000697 EMA[32][27]=0.001066 EMA[32][26]=0.001333 EMA[33][26]=0.001066 EMA[34][26]=0.000697 EMA[35][26]=0.000440 EMA[36][26]=0.000276

EMA[33][27]=0.001333 EMA[34][27]=0.001066 EMA[35][27]=0.000697 EMA[36][27]=0.000440

EMA[28][28]=0.007317 EMA[29][28]=0.002932 EMA[30][28]=0.001132 EMA[31][28]=0.000440 EMA[32][28]=0.000697 EMA[33][28]=0.001066 EMA[34][28]=0.001333 EMA[35][28]=0.001066 EMA[36][28]=0.000697

EMA[29][29]=0.007317 EMA[30][29]=0.002932 EMA[31][29]=0.000276 EMA[32][29]=0.000440 EMA[33][29]=0.000697 EMA[34][29]=0.001066 :MA[35][29]=0.001333 EMA[36][29]=0.001066

EMA[30][30]=0.007317 EMA[31][30]=0.000174 EMA[32][30]=0.000276 EMA[33][30]=0.000440 EMA[34][30]=0.000697 EMA[35][30]=0.001066 EMA[36][30]=0.001333

EMA[31][31]=0.007317 EMA[32][31]=0.002932 EMA[33][31]=0.001132 EMA[34][31]=0.000606 EMA[35][31]=0.000349 EMA[36][31]=0.000209 EMA[32][32]=0.007317 EMA[33][32]=0.002932 EMA[34][32]=0.001132 EMA[35][32]=0.000606 EMA[36][32]=0.000349 EMA[33][33]=0.007317 EMA[34][33]=0.002932 EMA[35][33]=0.001132 EMA[36][33]=0.000606

EMA[33][33]=0.00/31/ EMA[34][33]=0.002932 EMA[35][33]=0.001132 EMA[36][33]

EMA[34][34]=0.007317 EMA[35][34]=0.002932 EMA[36][34]=0.001132

EMA[35][35]=0.007317 EMA[36][35]=0.002932 EMA[36][36]=0.007317

_	Análisis FEA	42.0	-	Anális Zeevaer	is 2-D			Análisis FEM	2-0		Anális	(1980)	_		Análisis FEB	M 2-D		Anális	t [1980
Ð	6×	20	zb	õz	đt		6y	ð	ş	41	őz	zb		à	ð	õz	5	õ	tb
100 (rad	(rad)	(iii)	(T1/m2)	(m)	(Tt/m2)	NUDO	(rad)	(rad)	(E)	(Tf/m2)	(III)	(Tt/m2)	NUDO	(rad)	(rad)	(L	(T1/m2)	(II)	(T1/m)
1 -0.0008	468 0.0014833	-0.1563				4	-0.0000783	0.0002080	0.1534	5	0.1420	3,62	50	-0.000037	0.0000117	-0.1524			
200001	348 0.0013803	-0.1547			T	42	-0.0000765	0.0001512	0.1531				82	-0.0000010-	0.0000320	-0.1524			
3 -0.0000	492 0.0009842	-0.1537				43	-0.0000605	0.0001164	0.1529	S.00	0.2020	10%	83	-0.000032	0.0000142	-0.1524			
-0.0000	325 0.0006739	-0.1531				44	-0.0000462	0.0000731	0.1528				58	-0.0000255	0.0000133	-0.1524			
-0.0000	287 0.0004151	-0.1528				45	-0.0000334	0.0000444	0.1527	5.24	0581.0	5.23	85	-0.0000281	1510000131	-0.1524			
6 -0.0000	188 0.0002524	-0.1526				46	-0.0000256	-0.0000011	0.1527				86	-0.0000270	-0.000195	-0.1524			
00000	198 0.0000981	-0.1525				47	-0.0000196	-0.0000387	0.1527	5.24	0581.0	5,23	81	-0.0000368	1-0.0000523	-0.1525			
8 -0.0000	131 -0.0000150	-0.1525				48	-0.0000201	-0.0001009	0.1528				88	-0.000042	-0.0000716	-0.1525			
000000	139 -0.0001943	-0.1526				68	-0.0000251	-0.0001700	0.1529	4.99	0.202.0	10:5	89	-0.0000621	1-0.0001320	-0.1526			
0 0.0000	015 -0.0004260	-0.1528				8	-0.0000304	-0.0002949	0.1533				8	-0.0000670	0-0.0002140	-0.1528			
1 0.0000	350 -0.0008252	-0.1533				15	0.0000211	-0.0004851	0.1537	9.82	0.1420	9.62	16	0.0000411	0.0004064	-0.1530			
2 0.0001	494 -0.0013733	-0.1542				52	0.0003075	-0.0007096	0.1545		1		92	0.0000344	1-0.0000047	-0.1524			
3 0.0005	086 -0.0018705	-0.1557				53	-0.0004115	0.0000569	0.1530				66	0.0000190	0.0000460	-0.1523	9.36	0.1420	9.10
4 -0.0007	133 0.0004990	-0.1545				54	-0.0002371	0.0000634	0.1529				16	-0.0000094	0.0000739	-0.1524			
5 -0.0003	159 0.0005192	-0.1538	12.39	0.1420	11.29	55	-0.0001522	0.0000445	0.1528				56	-0.0000230	0.0000672	-0.1523	4.83	0.000.0	4.90
5 -0.0001	357 0.0004426	-0.1534				8	-0.0000943	0.0000490	0.1527				8	-0.0000305	0.0000390	-0.1523			
0.0000	433 0.0003270	-0.1530	7.20	0702.0-	1076	25	-0.0000662	0.0000258	0.1526				16	-0.0000321	0.0000242	-0.1523	5.04	0.1850	50.5
8 -0.0000	004 0.0002149	-0.1528				5	-0.0000433	0.0000196	0.1526				86	-0.0000358	0.0000040	-0.1523			
0.0000	232 0.0001310	-0.1526	7.52	0.1850	1.22	65	-0.0000395	-0.0000144	0.1526				8	-0.0000374	-0.0000194	-0.1523	5.04	0.1850	5.05
0 0.0000	294 0.0000455	-0.1526				8	-0.0000383	-0.0000313	0.1526				100	-0.000041	-0.0000508	-0.1524			
0.0000	341 -0.0000345	-0.1526	7.51	0.1850	7.22	61	-0.0000598	-0.0000782	0.1527				101	-0.0000478	0.0000754	-0.1524	4,83	0.2020	4.90
2 0.0000	250 -0.0001519	-0.1527				62	-0.0000927	-0.0001180	0.1528				102	-0.0000604	1-0.0001326	-0.1525			
3 0.0000	7205000.0- 100	-0.1529	12.1	0.2020	1072	63	-0.0001544	-0.0002176	0.1530				103	-0.0000561	-0.0002355	-0.1526	9,40	0.1420	05-30
4 -0.0000	665 -0.0005621	-0.1533				3	-0.0001929	-0.0003725	0.1533				104	0.000072	-0.0004762	-0.1529			
5 -0.0001	358 -0.0009187	-0.1539	12:41	0.1420	13.29	59	-0.0000277	-0.0004924	0.1536				105	0.0003312	0.0000660	-0.1527			
5 0.0001	335 -0.0012345	-0.1548				99	-0.0002227	0.0000131	0.1525				106	0.0001831	0.0002070	-0.1527			
-0.0000	804 0.0002509	-0.1538				67	-0.0001902	0.0000060	0.1525	9.37	0.1420	9.30	107	0.0000940	0.0001453	-0.1526			
90000- 8	862 0.0003622	-0.1535				3	-0.0001472	0.0000027	0.1525				108	0.0000624	0.0001105	-0.1525			
000070- 6	529 0.0002750	-0.1532				69	-0.0001162	0.0000157	0.1524	4.83	0.000.0	4.90	109	0.0000394	0.0000624	-0.1524			
000000-0	077 0.0002115	-0.1530				70	-0.0000986	0.0000065	0.1524				110	0.0000328	0.0000428	-0.1524			
1 0.0000	172 0.0001339	-0.1529				11	-0.0000869	0.0000031	0.1524	5.01	0.3850	5.05	111	0.0000234	0.0000030	-0.1524			
2 0.0000	364 0.000886	-0.1527				72	-0.0000838	-0.0000188	0.1524				112	0.0000252	-0.0000134	-0.1524			
3 0.0000	401 0.0000191	-0.1527				13	-0.0000867	-0.0000310	0.1524	5.05	0'1850	5.05	113	0.0000214	0550000.0-1	-0.1525			
4 0.0000	438 -0.0000326	-0.1527				74	-0.0001004	-0.0000620	0.1525				114	0.0000270	-0.0000817	-0.1525			
0.0000	295 -0.0001267	-0.1528				75	-0.0001227	-0.0000920	0.1526	4.83	0.2020	4.90	115	0.0000260	5 -0.0001562	-0.1526			
0.0000	031 -0.0002276	-0.1530				76	-0.0001546	-0.0001644	0.1527				116	0.0000511	-0.0002843	-0.1528			
0.0000	546 -0.0004092	-0.1533				11	-0.0001802	-0.0002661	0.1529	9.42	0.1420	9.30	117	0.0001871	-0.0006194	-0.1531			
8 -0.0001	034 -0.0006607	-0.1538				78	-0.0000607	0.0004021	0.1531				118	0.0001180	0.0000737	-0.1533			
0.0001	261 -0.0010297	-0.1544				52	-0.0000252	0.0000234	0.1524				2						
0 -0.0000	10010001401	-0.15 28				108	0.0000382	0.0000000	A 4534										

XVIIICCG / VIICRG-V. Del Cauca

ICEIG

Tabla 3. Resultados Desplazamientos y Presiones((Cont	t)
---	------	----

					Anál	isis 2-D					l l	Análi	sis 2-D
		Análisis FEM	12-D		Zeevae	ert [1980]			Análisis FEN	M 2-D]	Zeevae	rt [1980]
1	θy	θx	δz	qz	δz	qz		θy	θx	δz	qz	őz	qz
NUDO	(rad)	(rad)	(m)	(Tf/m2)	(m)	(Tf/m2)	NUDO	(rad)	(rad)	(m)	(Tf/m2)	(m)	(Tf/m2)
119	0.0000993	0.0001590	-0.1529	9.74	-0:1420	9.62	156	-0.0001164	-0.0003041	-0.1529			
120	0.0000468	0.0001159	-0.1527				157	0.0014960	-0.0004690	-0.1545			
121	0.0000166	0.0000930	-0.1525	5:00	0.2020	5.07	158	0.0009091	-0.0004306	-0.1537			l î
122	-0.0000002	0.0000562	-0.1525			1	159	0.0004972	-0.0002702	-0.1532			i i
123	-0.0000059	0.0000357	-0.1524	5.23	-0.1850	5.23	160	0.0002707	-0.0001551	-0.1528			
124	-0.0000080	0.0000022	-0.1524				161	0.0001499	-0.0000757	-0.1526			2 - 2
125	-0.0000029	-0.0000175	-0.1524	5.23	-0.1850	5.23	162	0.0000985	-0.0000379	-0.1525			
126	0.0000062	-0.0000533	-0.1525	_			163	0.0000726	-0.0000029	-0.1525			
127	0.0000269	-0.0000834	-0.1526	4.99	-0.2020	5.07	164	0.0000775	0.0000217	-0.1525			
128	0.0000663	-0.0001541	-0.1528	-			165	0.0001062	0.0000739	-0.1526			
129	0.0001649	-0.0002794	-0.1531	9.75	-0.1420	9.62	166	0.0002019	0.0001543	-0.1527			1
130	0.0003894	-0.0004887	-0.1536				167	0.0003987	0.0003073	-0.1531			I I
131	-0.0002529	0.0000292	-0.1528				168	0.0007516	0.0004864	-0.1537			li i
132	-0.0000829	0.0000631	-0.1527				169	0.0011315	0.0004555	-0.1546		-	
133	-0.0000363	0.0000807	-0.1526	-				Prom	nedio	-0.1529		-0.1763	
134	-0.0000104	0.0000830	-0.1525							1 · · · · · · · · · · · · · · · · · · ·			1.
135	-0.0000031	0.0000482	-0.1525										
136	0.0000064	0.0000400	-0.1524										
137	0.0000026	0.0000028	-0.1524										
138	0.0000031	-0.0000074	-0.1525			1							
139	-0.0000104	-0.0000478	-0.1525			11 11							
140	-0.0000238	-0.0000690	-0.1526										
141	-0.0000559	-0.0001449	-0.1527										
142	-0.0000712	-0.0002585	-0.1529			1. 5							
143	0.0000259	-0.0003690	-0.1531										
144	0.0001981	0.0000121	-0.1527										
145	0.0001305	0.0001389	-0.1527	12.23	-0.1420	13.29							
146	0.0000817	0.0000970	-0.1526										
147	0.0000442	0.0000737	-0.1525	7.20	-0.2020	7.01							
148	0.0000177	0.0000408	-0.1525		-								
149	-0.0000012	0.0000280	-0.1524	7.52	-0.1850	7.22							
150	-0.0000121	0.0000015	-0.1524			-							
151	-0.0000198	-0.0000084	-0.1524	7.52	-0.1850	7.22							
152	-0.0000230	-0.0000356	-0.1524			-							
153	-0.0000252	-0.0000556	-0.1525	7.19	-0.2020	7.01							
154	-0.0000273	-0.0001140	-0.1526										
155	-0.0000550	-0.0001861	-0.1527	12.24	-0.1420	13.29							

4. Análisis de Resultados con CSI-ETABS

Se hace un análisis comparativo con el software CSI-ETABS, <u>usando elementos finitos</u> <u>rectangulares de tipo "thick"</u>, adicionando únicamente los valores de los resortes del suelo en la dirección Z (No se utiliza el Coeficiente de Balasto Tf/m3) en cada nudo de la placa discretizada cada 1.0m en ambas direcciones, para obtener: a) Asentamientos, b) Solicitaciones (M_{s11}, M_{s22}, V_{smáx}) y c) Refuerzo Longitudinal, tomando como Factor de Carga FC=1.2 para el diseño del secciones doble refuerzo, es decir M_{u11} =FC* M_{s11}, M_{u22} =FC* M_{s22}, V_{umáx} =FC* V_{smáx}. Los datos de salida del análisis 2-D se muestran en la Tabla 3. El cálculo de resortes [Kss](placa +suelo) se muestran en la Taba 4. Los resultados del Dr. Zeevaert[18] son: El asentamiento promedio es de 0.1763 m, el Momento flector negativo en Dir-1 de 36.53Tfm/m, el Momento flector positivo en Dir-1 de 44.69Tf-m/m en el centro de la placa.

Los resultados con elementos finitos triangulares (análisis 2-D de esta investigación) son: el asentamiento promedio es de 0.1529m, el Momento flector Positivo en Dir-1 de 46.22Tf-m/m, en Dir-2 de 42.89Tf-m/m, el Momento flector negativo en Dir-1 y Dir-2 de 30.11T-m/m.

Los resultados con CSI-ETABS 2-D son: el asentamiento promedio es de 0.16244m según la Fig. 6, los momentos flectores positivos en Dir-1 de 42.74Tf-m en centro de la placa, en Dir-2 de 67.15 Tf-m/m en centro de la placa, en Dir-2 de 96.44Tf-m/m en los extremos centrales de la placa, los momentos flectores negativos en Dir-1 de 174.84Tf-m/m debajo de carga Pi(-311.12Tf), en Dir-2 de 40.13T-m/m debajo de carga Pi(-311.12Tf).

de	ebajo de Car	gas Conce	ntrada	as Pi para	el Ejemp	olo 1, Mola	ano [15]	
Nudo	X(m)	Y(m)			Nudo	X(m)	Y(m)	
1	0.00	0.00			169	24.00	12.00	
δz	θ×	θγ			δz	θ×	θy	
10,888.26	8,848.86	-6,637.85	δz		12,109.53	4,800.66	8,423.36	δz
	62,666.28	423.60	θx			68,296.54	6,909.91	θ×
SIM		80,320.70	θγ		SIM		55,911.03	θγ
Nudo	X(m)	Y(m)			Nudo	X(m)	Y(m)	
13	0.00	12.00			157	24.00	0.00	
δz	θ×	θy			δz	θx	θy	
11,897.75	-9,101.86	2,744.90	δz		12,155.21	-4,152.97	11,085.57	δz
	92,196.42	33,968.65	θ×			112,519.80	16,819.61	θx
SIM		187,752.70	θy		SIM		65,538.90	θy
Nudo	X(m)	Y(m)			Nudo	X(m)	Y(m)	
40	6.00	0.00			130	18.00	12.00	
δz	θ×	θγ			δz	θ×	θy	
13,052.99	1,160.85	187.56	δz		13,291.66	-3,017.82	3,688.97	δz
	317,313.78	-76,520.89	θ×			301,015.75	85,227.76	θ×
SIM		264,710.66	θγ		SIM		273,965.81	θγ
Nudo	X(m)	Y(m)			Nudo	X(m)	Y(m)	
52	6.00	12.00			118	18.00	0.00	
δz	θ×	θγ			δz	θ×	θγ	
13,058.93	-4,806.38	2,501.96	δz		13,198.27	608.46	1,763.94	δz
	283,870.66	76,485.51	θ×			320,909.38	-81,030.84	θ×
SIM		270,220.75	θy		SIM		271,661.38	θy

Tabla 4. Cálculo de Resortes [Kss] (Placa +Suelo) debajo de Cargas Concentradas Pi para el Ejemplo 1, Molano [1

<u>Es claro que los resultados de Fuerzas Cortantes y Momentos Flectores obtenidos con</u> <u>CSI-ETABS son más precisos que el método usado en esta investigación, puesto que es</u> <u>un excelente software comercial,</u> y se usarán para el cálculo del refuerzo longitudinal (in²/m) de secciones doble refuerzo, mostrados en las Figs. 7 y 8, en ambas direcciones con ayuda de la Tabla 5 Molano[13] con los siguientes datos de soporte:

<u>bw=1.0m, h=0.770830m, d'=0.075m, dt=h-d'=0.695830m, d'/dt=0.107785, h/dt=1.107785,</u> <u>ρ'/ρ=0.625, F'c=3.5Ksi=2460.78Tf/m2, Ec=3372.17Ksi, ecu=0.004, β1=0.85, Fy=60Ksi,</u> Es=29000Ksi, μφ=φu/φy, Rn(adimensional)=Mu(Tf-m/m)/ [0.9F´c.bw.dt²], bo=5.7832m (perím. para revisión cortante 2-D), φvc-2D=115.76Tf/m2. Se suponen columnas medianeras de 0.60mx0.60m que entregan la carga de la super-estructura a la placa de cimentación. Con ρ =0.333%(mínima), ρ'=0.625*ρ=0.208% >= 0.18% del acero de retracción y temperatura que exige el ACI 318-19 en el numeral 24.4.3.2.

Tabla muestra refuerzo Kgf/m2 La 5 un total con un tenor de 66 Ó (66Kgf/m2)/(0.77083m)=85.62Tf/m3 que está dentro del rango 50-110Tf/m3 según el "anexo 7 de cuantías de refuerzo para elementos estructurales" pág 959 Alvéstegui[1].

				¢Vc_2D Tf/m	000	669.4	669.4	669.4	669.4	669.4	1 669.4	1 669.4																																	-	-
				Vu _{Max} tonf/m	100 71	180.71	180.71	180.71	190.24	190.24	190.24	190.24	3.81	3.81	3.81	06.8	3.90	3.90	3.90	3.90	3.90	3.90	3.90	12.01	12.01	12.01	12.01	68.1t	00.10	68.16	64.65	64.65	64.65	64.65	13.99	13.95	13.95	12.75 F 26	95.2	5.36	5.36	5.36	5.36	5.36	12.00	13.75
				÷	14 60	14.68	14.68	14.68	14.74	14.74	14.74	14.74	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	10.42	10.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16.42	16 A7	16.47	16.42	16.42	16.42	16.42	16.42	16.42	10.42
70		e la placa	(u	barras	#Eclo 30m	#6c/0.20m	#6c/0.20m	#6c/0.20m	#6c/0.20m	#6c/0.20m	#6c/0.20m	#6c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0 30m	#5c/0 20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#5c/0.20m	#Sc/U.ZUm
NTE		perior de	22(in2/n	A's= in ² /m)	V L C	2.74	2.74	2.74	2.72	2.72	2.72	2.72	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25	2.25 2.25	C7.2	366	2.25	2.25	2.25	2.25	2.25	2.25	2.25	36 6	375	2.25	2.25	2.25	2.25	2.25	2.25	2.43
CORTA		n la parte su	A's	j	0 003EAD	0.002540	0.002540	0.002540	0.002520	0.002520	0.002520	0.002520	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002003	0.002003	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083		0.007083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002083	0.002050
ERZAS		in2/m) va ei		barras	m0c 0/ 00#	#8c/0.20m	#8c/0.20m	#8c/0.20m	#8c/0.20m	#8c/0.20m	#8c/0.20m	#8c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#/c/u.20m	#7c/0.20m	#7c/0.20111	#7c/0.20m	#/C/0.20m														
K EU	a placa	itivo) As		As= n ² /m)	OC V	4.30	4.38	4.38	4.35	4.35	4.35	4.35	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3.60	3 60	3 60	3.60	3.60	3.60	3.60	3.60	3.60	3.00
[NAL	r sentido de	2 < 0.0 (pos	22(in2/m)		P PONOCA	0.004064	0.004064	0.004064	0.004032	0.004032	0.004032	0.004032	0.003333	0.003333	0.003333	555500.0	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	222200.0	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333		2222000	0.003333	0.003333	0.003333	0.003333	0.003333	0.003333	0.0033335
GITUD.	en cualquie	522: si Ms2	Asi	i g	ZZDINI	0.064570	0.064570	0.064570	0.064062	0.064062 (0.064062	0.064062	0.037416	0.037416 (0.037416	0.024289	0.024289	0.024289	0.024289	0.024212	0.024212	0.024212	0.024212	0.023886	0.023886	0.023886	0.023886	0.022042	0.072042	0.022042	0.021965	0.021965	0.021965	0.021965	0.009728	0.009728	0.009728		A ADAGAGA	969600.0	969600.0	0.009472	0.009472	0.009472	0.009472	U.UU95441
O LON	con tierra	As		M _{s22} Tf-m/m	CC 02	-69.23	-69.23	-69.23	-68.69	-68.69	-68.69	-68.69	-40.12	-40.12	-40.12	- 26.04	-26.04	-26.04	-26.04	-25.96	-25.96	-25.96	-25.96	-25.61	-25.61	-25.61	-25.61	- 23.03	- 23.03	- 23.63	-23.55	-23.55	-23.55	-23.55	-10.43	-10.43	-10.43	10 VU	10.40	-10.40	-10.40	-10.16	-10.16	-10.16	-10.16	- TU.UZ
FUERZ	<u>Om(contacto</u>			ł	10 50	10.58	10.58	10.58	10.48	10.48	10.48	10.48	16.06	16.06	16.06	15.30	15.30	15.30	15.30	14.87	14.87	14.87	14.87	15.18	15.18	15.18	15.18	14.8/	14.07	14.0/	15.04	15.04	15.04	15.04	13.97	13.97	13.97	10.CT	14 16	14.16	14.16	13.76	13.76	13.76	13.76	10.3/
ULO RE	A's=#5c/0.2	e la placa		barras	m0C 0/ 201	8c/0.20m	t8c/0.20m	8c/0.20m	8c/0.20m	8c/0.20m	t8c/0.20m	t8c/0.20m	t6c/0.20m	16c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	f6c/0.20m	t6c/0.20m	t6c/0.20m	ł6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	16c/0.20m	10C/0.20m	10C/0.20m	100/070m	t6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	t6c/0.20m	16c/0.20m	11107.0/104	tec/0 30m	6c/0.20m	t6c/0.20m	t6c/0.20m	6c/0.20m	t6c/0.20m	t6c/0.20m	BC/U.ZUM I
ALCI	on aire).	perior de	.1(in2/m	A's= n²/m)	# VO V	4.84 #	4.84 #	4.84 #	4.91 #	4.91 #	4.91 #	4.91 #	2.34 #	2.34 #	2.34 #	# PS C	2.54 #	2.54 #	2.54 #	2.68 #	2.68 #	2.68 #	2.68 #	2.58 #	2.58 #	2.58 #	2.58 #	Z.58	4 00 C	# 89 C	2.62 #	2.62 #	2.62 #	2.62 #	2.99 #	2.99 #	2.99 #	# CO C	# 000	2.92 #	2.92 #	3.07 #	3.07 #	3.07 #	3.07 #	# 7C.7
ORTE C	contacto c	n la parte su	A's1	j.	100000	0.004487	0.004487	0.004487	0.004557	0.004557	0.004557	0.004557	0.002166	0.002166	0.002166	0.002359	0.002359	0.002359	0.002359	0.002481	0.002481	0.002481	0.002481	0.002393	0.002393	0.002393	0.002393	1.002401	1042000	0.007481	0.002434	0.002434	0.002434	0.002434	0.002770	0.002770	0.002770	0.012000	0.002705	0.002705	0.002705	0.002842	0.002842	0.002842	0.002842	0.002541
. SOP(s=#7c/0.20m	in2/m) va ei		barras	17-10 JOm	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7c/0.20m	#7/0.20	#7/0.20	#7/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	0C 0/ 0#	07.0/0#	#8/0 JU	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	07.0/0#	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/0.20	#8/U.2U
ABLA 5	As min: A	positivo) As		As= in ² /m)	tc VL L	7.74 24	7.74 24	7.74 23	7.86 21	7.86 24	7.86 2	7.86 2	3.74	3.74	3.74	4.07	4.07	4.07	4.07	4.28	4.28	4.28	4.28	4.13	4.13	4.13	4.13	4.28	4.28	4.20	4.20	4.20	4.20	4.20	4.78	4.78	4.78	4./0	167	4.67	4.67	4.90	4.90	4.90	4.90	4.04
ΤA	se tiene	11 < 0.0 (1(in2/m)	-	170	178	178	178	291	291	291	291	466	466	466	775	775	775	775	696	696	696	696	829	829	829	829	202	6050	040	894	894	894	894	433	433	433	207	377	327	327	547	547	547	547	/40
	e acero.	1 si Msi	As1	c	7000 2	6 0.007	6 0.007	6 0.007	1 0.007	1 0.007	1 0.007	1 0.007	6 0.003	6 0.003	E00.0 3	6 0.003	6 0.003	6 0.003	6 0.003	7 0.003	7 0.003	7 0.003	7 0.003	2 0.003	2 0.003	2 0.003	200.00 Z	5 U.UU3	500.0 Z	200.0 2	6 0.003	6 0.003	6 0.003	6 0.003	0 0.004	0.004	0 0.004			9 0.004	9 0.004	9 0.004	9 0.004	9 0.004	0.004	0.003
	muestra	As1.		Ru	110 11 JE1	0.11351	0.11351	0.11351	0.11528	0.11528	0.11528	0.11528	-0.05512	-0.05512	-0.05512	00090.0-	-0.06000	-0.06000	-0.06000	-0.06307	-0.06307	-0.06307	-0.06307	-0.06086	-0.06086	-0.06086	-0.06086	0.06307	0.06307	10500.0	0.06188	0.06188	0.06188	0.06188	-0.07039	-0.07035	-0.07039	CT930 0-	-0.06877	-0.06872	-0.06872	-0.07219	-0.07219	-0.07219	-0.07219	PC6CU.0-
	Si no se			± "±	CV 101	101.43	101.43	101.43	103.01	103.01	103.01	103.01	-59.11	-59.11	-59.11	-64.34	-64.34	-64.34	-64.34	-67.63	-67.63	-67.63	-67.63	-65.26	-65.26	-65.26	-65.26	67.03	C7 C3	67.63	66.36	66.36	66.36	66.36	-75.47	-75.47	-15.47	73.60	73.60	-73.69	-73.69	-77.41	-77.41	-77.41	-77.41 co of	102.60-
				loint	ADE	415	561	571	405	415	561	571	484	492	484	470	480	496	506	483	493	483	493	470	480	496	506	405	C14	100	405	415	561	571	469	481	495	100	181	495	507	482	494	482	494	450

Sociedad Colombiana de Geotecnia

TABLA 5	. SOPORTE	CALCULO	REFUERZO	LONGITUDINAL	Y FUERZAS	CORTANTES(Cont
1000						
(Si no se muest	ra el acero, se tiene As min: A	Ns=#7c/0.20m (contacto con	aire). A's=#5c/0.20m(contacto	con tierra) en cualquier sentido de la placa)		

$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	se muest	ra el acero, se	tiene As min:	As=#7c/0.20	m contacto	CUITAIL	1, A 5=#30/ U	70micontae		nhipm lia f		אקול בי א							
	A	vs11 si Ms11	< 0.0 (positivo)	As(in2/m) va	en la parte	superior	de la placa			As22: si Ms	22 < 0.0 (po	sitivo) A	s(in2/m) va	en la parte	superior	de la placa		-1	
PL		As11(i	n2/m)		A	s11(in2/	(m			A	s22(in2/m)				A's22(in2	(m)			
0.0554 0.0034 0.034 2.3 0.0034 2.3 0.0334 <th2.3< th=""> 0.0334 0.0334</th2.3<>	Rn	9	As= (in²/m)	barras	ē	A's= (in ² /m)	barras	4	M _{s22} Tf-m/m	Rn ₁₁₂₂	٩	As= (in²/m)	barras	ď	A's= (in²/m)	barras	1	Vu _{Max} tonf/m	¢Vc_2 Tf/m
CUMDRed CUMDRed <t< td=""><td>-0.059</td><td>546 0.00374</td><td>6 4.04</td><td>#8/0.20</td><td>0.002341</td><td>2.52</td><td>#6c/0.20m</td><td>15.37</td><td>-10.02</td><td>-0.009344</td><td>0.003333</td><td>3.60</td><td>#7c/0.20m</td><td>0.00208</td><td>3 2.25</td><td>#5c/0.20m</td><td>1 16.42</td><td>13.99</td><td></td></t<>	-0.059	546 0.00374	6 4.04	#8/0.20	0.002341	2.52	#6c/0.20m	15.37	-10.02	-0.009344	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	1 16.42	13.99	
Concressed Concres Concressed Concressed	-0.059	546 0.00374	6 4.04	#8/0.20	0.002341	2.52	#6c/0.20m	15.37	-10.02	-0.009344	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	13.99	
ONCOME ASS MAR ONCOME ASS MAR M	-0.059	546 0.00374	6 4.04	#8/0.20	0.002341	2.52	#6c/0.20m	15.37	-10.02	-0.009344	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	13.99	
Concrete	-0.063	1276 0.00398	2 4.29	#8/0.20	0.002489	2.68	#6c/0.20m	14.85	-9.98	-0.009312	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	24.92	
CONTROL CONTROL <t< td=""><td>-0.063</td><td>1276 0.00398</td><td>2 4.29</td><td>#8/0.20</td><td>0.002489</td><td>2.68</td><td>#6c/0.20m</td><td>14.85</td><td>-9.98</td><td>-0.009312</td><td>0.003333</td><td>3.60</td><td>#7c/0.20m</td><td>0.00208</td><td>3 2.25</td><td>#5c/0.20m</td><td>n 16.42</td><td>24.92</td><td></td></t<>	-0.063	1276 0.00398	2 4.29	#8/0.20	0.002489	2.68	#6c/0.20m	14.85	-9.98	-0.009312	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	24.92	
0.00000 3.9 6.00000 2.9 6.000000 2.9	-0.063	276 0.00398	2 4.29	#8/0.20	0.002489	2.68	#6c/0.20m	14.85	-9.98	-0.009312	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	24.92	
0.00000 3.3 6.0 3.3	-0.063	276 0.00398	2 4.29	#8/0.20	0.002489	2.68	#6c/0.20m	14.85	-9.98	-0.009312	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	1 16.42	24.92	
0.00084 3.94 60.00 0.00034 3.84 60.0004	-0.058	096 0.00365	4 3.94	#8/0.20	0.002284	2.46	#6c/0.20m	15.59	-8.47	-0.007904	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	13.99	
0.00366 0.0036 3.3 8.0 0.0036 3.5 6.0036 1.5 1.3	-0.058	096 0.00365	4 3.94	#8/0.20	0.002284	2.46	#6c/0.20m	15.59	-8.47	-0.007904	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	1 16.42	13.99	
0.00036 3.3 6 6 7.0 0.00036 1.3 5 6 7.0 1.3 <td>-0.058</td> <td>096 0.00365</td> <td>4 3.94</td> <td>#8/0.20</td> <td>0.002284</td> <td>2.46</td> <td>#6c/0.20m</td> <td>15.59</td> <td>-8.47</td> <td>-0.007904</td> <td>0.003333</td> <td>3.60</td> <td>#7c/0.20m</td> <td>0.00208</td> <td>3 2.25</td> <td>#5c/0.20m</td> <td>1 16.42</td> <td>13.99</td> <td></td>	-0.058	096 0.00365	4 3.94	#8/0.20	0.002284	2.46	#6c/0.20m	15.59	-8.47	-0.007904	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	1 16.42	13.99	
0.00544 0.00133 0.00133 0.00	-0.058	096 0.00365	4 3.94	#8/0.20	0.002284	2.46	#6c/0.20m	15.59	-8.47	-0.007904	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	1 16.42	13.99	
0.05542 0.0103 3.3 0.0003 3.3 0.00033 3.5 0.000333 3.5 0.00033	-0.056	442 0.00354	9 3.83	#8/0.20	0.002218	2.39	#6c/0.20m	15.85	-7.80	-0.007273	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.06444 0.00394 3.8 0.00103 3.1 0.00103 3.5 0.00103	-0.056	442 0.00354	9 3.83	#8/0.20	0.002218	2.39	#6c/0.20m	15.85	-7.80	-0.007273	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.005421 0.00156 3.3 6.7 0.00156 3.6 7.6 0.00156 3.6 7.6 0.00156 3.6 7.6 0.00156 3.6 7.6 0.00156 3.6 6.00166 1.5 5.6 0.00156 5.5 6.60106 1.5 5.5 5.6	-0.056	442 0.00354	9 3.83	#8/0.20	0.002218	2.39	#6c/0.20m	15.85	-7.80	-0.007273	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.00383 0.00138 5 6 0.00138 6 0.00138 6 0.00138	-0.056	442 0.00354	9 3.83	#8/0.20	0.002218	2.39	#6c/0.20m	15.85	-7.80	-0.007273	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.008833 0.00013 1.5 4.00 0.00033 2.5 6.000136 0.00033 2.5 6.000136 0.00035 2.5 6.000136 0.00035 2.5 6.000136 0.00035 2.5 6.000136 0.5 5.6 0.5 0.008533 0.00153 2.5 6.000136 0.15 3.5 6.00136 0.5 5.6 1.0013 5.5 5.6 1.0013 5.6	-0.059	823 0.00376	3 4.06	#8/0.20	0.002352	2.54	#6c/0.20m	15.33	-7.65	-0.007136	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
000000000000000000000000000000000000	-0.059	823 0.00376	3 4.06	#8/0.20	0.002352	2.54	#6c/0.20m	15.33	-7.65	-0.007136	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	16.42	5.36	
0.005552 0.00135 5.8 7.75 0.000333 5.0 7.70 0.001333 5.0 7.70 0.001333 5.0 7.70 0.001333 5.0 7.70 0.001333 5.0 7.70 0.001333 5.0 7.70 0.001333 0.001333 0.001333	-0.059	823 0.00376	3 4.06	#8/0.20	0.002352	2.54	#6c/0.20m	15.33	-7.65	-0.007136	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.00552 0.00126 4.5 66,020 1.55 3.43 0.002303 3.60 77/0.200 0.002303 2.56 66,0200 16.42 380,01 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 16.47 180,01 186,020 186,020 16.47 180,01 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020 186,020	-0.059	823 0.00376	3 4.06	#8/0.20	0.002352	2.54	#6c/0.20m	15.33	-7.65	-0.007136	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	5.36	
0.000555 0.00126 4.45 86/0.0 0.00239 2.38 66/0.20m 4.45 86/0.20m 0.00239 2.38 66/0.20m 1.64 1.84.7 1.80.71 66.46 0.065555 0.00136 3.45 88/0.20 0.02339 2.78 86/0.20m 1.45.8 3.80 77/0.20m 0.00268 2.54 86/0.20m 1.84.7 3.80.7 0.065575 0.00136 3.85 88/0.20 0.00239 2.04 86/0.20m 1.84.7 1.80.71 664.9 0.065573 0.00356 3.85 88/0.20 0.00239 2.40 86/0.20m 1.84.7 1.90.74 664.9 0.05579 0.00356 3.85 88/0.20 0.00333 3.60 87/0.20m 0.00368 1.90.7 164.7 190.24 664.9 0.055719 0.00356 3.85 87/0.20m 8.66 2.84 86/0.20m 164.7 190.24 664.9 0.15676 1.118 (147+1410) 0.01326 0.03216 0.03216	0.065	552 0.00412	6 4.45	#8/0.20	0.002579	2.78	#6c/0.20m	14.55	34.33	0.032019	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	180.71	669.4
0.0005523 0.000416 4.45 #6/0.20 0.000533 3.43 0.000303 3.54 #7/0.200 0.000303 2.25 #5/0.200 16.42 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 38.07 16.40 18.07.1 668.46 0.005572 0.00536 3.85 #8/0.20 0.00230 2.47 #6/0.200 15.80 34.80 033246 0.00333 3.64 #7/0.200 16.42 390.47 669.47 0.055712 1118 2/0.200 0.002310 14.84 30.03 35.6 #7/0.200 16.42 390.74 669.47 0.15606 1118 2/0.200 10.64 5.9 27/0.200 16.42 18	0.065	552 0.00412	6 4.45	#8/0.20	0.002579	2.78	#6c/0.20m	14.55	34.33	0.032019	0.003333	3.60	#7c/0.20m	0.00208.	3 2.25	#5c/0.20m	n 16.42	180.71	669.4
C 003563 6 m m (0.00368) 3 m (0.00369) 6 m (0.00368) 3 m (0.00388) 3 m (0.0038	0.065	552 0.00412	6 4.45	#8/0.20	0.002579	2.78	#6c/0.20m	14.55	34.33	0.032019	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	180.71	669.4
0.056729 0.002368 3.85 #6/0.20 0.002303 2.46 0.032388 0.003333 3.66 #7/0.020m 0.002333 3.69 #7/0.020m 0.002333 3.69 #7/0.020m 0.002333 3.69 7/0.020m 0.002333 3.69 7/0.020m 0.000333 2.25 #5/0.20m 1.64.2 3.90.24 669.46 0.056779 0.003568 3.85 #7/0.020m 0.000333 2.8 #7/0.020m 0.000333 2.5 #5/0.20m 16.42 190.24 669.46 0.056779 0.003568 3.85 #7/0.020m 0.000333 2.8 #7/0.20m 0.00233 2.8 190.24 669.46 0.015676 1118 (1177) #7/0.10m 0.000333 2.8 #7/0.20m 0.000333 2.8 #7/0.20m 16.42 180.71 669.46 0.156061 0.113 (1177) #7/0.20m 8.54 3.90 #7/0.20m 10.02333 2.8 #7/0.20m 16.072 180.71 180.71 180.71 180.71	0.065	552 0.00412	6 4.45	#8/0.20	0.002579	2.78	#6c/0.20m	14.55	34.33	0.032019	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	180.71	669.4
0.0056726 0.002368 3.8 ##/0.20 0.002368 2.4 #6/0.20m 1.5 0.002368 0.002388 2.2 #5/0.20m 1.642 1.902.4 666.46 0.056729 0.003368 3.8 #8/0.20 0.00238 2.4 #6/0.20m 1.58.0 34.60 0.003333 3.60 #7/0.20m 1.002088 2.2 #5/0.20m 1.642 1.902.4 669.46 0.056729 0.003368 1.18 (47+1410) 0.002466 6.9 247/0.20m 8.54 33.94 17/0.20m 0.002088 1.5 160.72m 160.74 69.46 0.163061 0.1138 (47+1410) 0.00476 6.9 247/0.20m 8.54 33.94 17/0.20m 0.002088 1.5 160.71 669.46 0.163061 1.11.8 (47+1410) 0.00476 6.9 247/0.20m 8.54 30.94 17/0.20m 16.7 16.7 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.9 16.	0.056	729 0.00356	3.85	#8/0.20	0.002230	2.40	#6c/0.20m	15.80	34.60	0.032268	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	190.24	669.4
0.056726 0.00336 3.85 #\$(1,20 0.00236 1.55 0.00333 3.60 #7(1,20n 0.00333 1.60 1.62 <t< td=""><td>0.056</td><td>729 0.00356</td><td>3.85</td><td>#8/0.20</td><td>0.002230</td><td>2.40</td><td>#6c/0.20m</td><td>15.80</td><td>34.60</td><td>0.032268</td><td>0.003333</td><td>3.60</td><td>#7c/0.20m</td><td>0.00208</td><td>3 2.25</td><td>#5c/0.20m</td><td>n 16.42</td><td>190.24</td><td>669.4</td></t<>	0.056	729 0.00356	3.85	#8/0.20	0.002230	2.40	#6c/0.20m	15.80	34.60	0.032268	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	190.24	669.4
0.005672 0.00236 3.85 #\$\$(\u00e076 0.00236 3.86 1.76(\u00e076 0.00236 3.86(\u00e076 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.642 1.643	0.056	729 0.00356	3.85	#8/0.20	0.002230	2.40	#6c/0.20m	15.80	34.60	0.032268	0.003333	3.60	#7c/0.20m	0.00208:	3 2.25	#5c/0.20m	n 16.42	190.24	669.4
0.163061 0.11.8 (147-141.0) 0.006476 6.90 2475(0.20m 8.54 39.94 0.03333 3.60 #77(0.20m 0.002033 16.42 180.71 689.46 0.163061 0.01362 11.18 (70.20m) 0.006476 6.90 2475(0.20m) 8.54 39.94 0.03333 3.60 #77(0.20m) 16.42 180.71 689.46 0.163061 0.10362 11.18 (147-1410) 0.006476 6.90 2475(0.20m) 8.54 0.03333 3.60 #77(0.20m 0.002033 18.67(0.20m 18.0.71 689.46 0.163061 0.10362 11.18 (147-1410) 0.006476 6.90 2475(0.20m 8.54 18.0.71 689.46 69.46 0.163061 0.10362 11.18 (147-1410) 0.006476 6.90 2475(0.20m 8.54 180.71 689.46 0.165028 0.01362 11.31 (147-1410) 0.006476 6.90 2475(0.20m 8.67.20m 16.42 180.71 689.46	0.056	729 0.00356	3.85	#8/0.20	0.002230	2.40	#6c/0.20m	15.80	34.60	0.032268	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	190.24	669.4
0.163061 0.1138 (1#7+1#10) 0.006476 6.99 2#7c/0.20m 8.54 39.94 0.03333 3.60 #7c/0.20m 0.602033 #5c/0.20m 16.42 180.71 66946 0.163061 0.10362 11.18 (1#7+1#10) 0.006476 6.99 2#7c/0.20m 8.54 39.94 0.03748 0.00333 3.60 #7c/0.20m 0.60203 180.71 66946 0.163061 11.18 (1#7+1#10) 0.006476 5.9 2#7c/0.20m 8.54 39.94 0.03748 0.00333 3.60 #7c/0.20m 16.42 180.71 66946 0.163052 11.31 c/0.20m 0.006476 5.9 2#7c/0.20m 8.48 40.13 0.03333 3.60 #7c/0.20m 16.42 180.71 66946 0.163028 0.1131 c/0.20m 0.006476 5.9 2#7c/0.20m 8.48 40.13 0.03333 3.60 #7c/0.20m 16.02 180.74 66946 0.163028 0.1131 c/0.20m 0.006476	0.163	061 0.01036	2 11.18	(1#7+1#10) c/0.20m	0.006476	6.99	2#7c/0.20m	8.54	39.94	0.037248	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	16.42	180.71	669.4
0163061 010382 (1#7+1#10) (006476 6.99 2#72(0.20m 8.54 0.03333 3.60 #72(0.20m 6.69 16.02 18.071 66946 0163061 (1#7+1#10) 0.006476 6.99 2#72(0.20m 8.54 39.94 0.03733 3.60 #72(0.20m 16.42 180.71 66946 0.163061 (1#7+1#10) 0.06476 6.99 2#72(0.20m 8.54 39.94 0.03333 3.60 #72(0.20m 16.42 180.71 66946 0.165028 0.010489 11.31 (2/0.20m 0.06476 6.99 2#72(0.20m 8.48 40.13 0.03333 3.60 #72(0.20m 16.42 180.71 66946 0.165028 0.1131 (1#7+1#10) 0.066556 707 2#72(0.20m 8.48 40.13 0.03333 3.60 #72(0.20m 16.42 190.24 66946 0.165028 0.101489 11.31 (1#7+1#10) 0.006556 707 2#72(0.20m 8.40.13 0.03333 3.60	0.163	061 0.01036	2 11.18	(1#7+1#10) c/0.20m	0.006476	6.99	2#7c/0.20m	8.54	39.94	0.037248	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	n 16.42	180.71	669.4
0.163001 $(1\#7+1\#1)$ $(1\#7+1\#1)$ $(1\#7+1\#1)$ $(1\#7+1\#1)$ $(1+7+1\#1)$ $(1+7+1\#1)$ $(1+7+1\#1)$ $(1+7+1#1)$ $(1-7)$	0.163	061 0.01036	2 11.18	(1#7+1#10) c/0.20m	0.006476	6.99	2#7c/0.20m	8.54	39.94	0.037248	0.003333	3.60	#7c/0.20m	0.00208	3 2.25	#5c/0.20m	n 16.42	180.71	669.2
0.165028 0.10488 (1#7+1#10) 0.006556 7.07 2#7c/0.20m 8.48 40.13 0.03333 3.60 #7c/0.20m 0.002083 15.67 #5c/0.20m 16.42 190.24 66946 0.165028 0.010489 11.31 (1#7+1#10) 0.006556 7.07 2#7c/0.20m 8.48 40.13 0.03333 3.60 #7c/0.20m 16.42 190.24 66946 0.165028 0.010489 11.31 (000556 7.07 2#7c/0.20m 8.48 40.13 0.03333 3.60 #7c/0.20m 16.42 190.24 66946 0.165028 0.010489 11.31 (000556 7.07 2#7c/0.20m 8.48 40.13 0.037428 0.00333 3.60 #7c/0.20m 16.42 190.24 66946 0.165028 0.010489 11.31 (000556 7.07 2#7c/0.20m 8.40.13 0.037428 0.00333 3.60 #7c/0.20m 16.42 190.24 66946 0.165028 0.010489 1.311 (1#7+1#10)	0.163	061 0.01036	2 11.18	(1#7+1#10) c/0.20m	0.006476	6.99	2#7c/0.20m	8.54	39.94	0.037248	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	n 16.42	180.71	669.2
0.165028 0.010489 (1#7+1#10) (0.00556 7.07 2#7C/0.20m 8.48 40.13 0.037428 0.002333 3.60 #7C/0.20m 0.02083 2.55 #5C/0.20m 16.42 190.24 66946 0.165028 0.101489 11.31 (1#7+1#10) 0.006556 7.07 8.48 40.13 0.03333 3.60 #7C/0.20m 0.002083 2.55 #5C/0.20m 16.42 190.24 66946 0.165028 0.101489 11.31 (1#7+1#10) 0.005556 7.07 8.48 40.13 0.03333 3.60 #7C/0.20m 0.002083 2.55 #5C/0.20m 16.42 190.24 66946 0.165028 0.1010489 11.31 (100208) 0.002083 3.60 #7C/0.20m 0.002083 2.55 #5C/0.20m 16.42 190.24 66946 0.165028 0.1010489 11.31 (100208) 0.002083 3.60 #7C/0.20m 0.002080 16.42 190.24 66946 0.1650208 0.1010480 0.0	0.165	028 0.01048	11.31	(1#7+1#10) c/0.20m	0.006556	7.07	2#7c/0.20m	8.48	40.13	0.037428	0.003333	3.60	#7c/0.20m	0.002083	\$ 2.25	#5c/0.20m	16.42	190.24	6693
0.165028 0.010489 (1#7+1#10) 0.006556 7.07 2#7C/0.20m 8.48 40.13 0.03333 3.60 #7C/0.20m 0.002083 15.42 190.24 66946 0.165028 0.010489 11.31 (1#7+1#10) 0.006556 7.07 2#7C/0.20m 8.48 40.13 0.033333 3.60 #7C/0.20m 16.42 190.24 66946 0.165028 0.1131 (1#7+1#10) 0.006556 7.07 2#7C/0.20m 8.48 40.13 0.033333 3.60 #7C/0.20m 16.42 190.24 66946 0.165028 0.1131 c/0.02066 7.07 2#7C/0.20m 8.48 40.13 0.033333 3.60 #7C/0.20m 16.42 190.24 66946 0.165028 0.11.31 c/0.20m 0.002083 3.50 #7C/0.20m 0.002083 17.47 190.24 190.24 190.24 66946 0.00344 3.71 0.0020394 4.31 0.0020496 2.69 641(m2) 1602 190.24 1602	0.165	028 0.01048	11.31	(1#7+1#10) c/0.20m	0.006556	7.07	2#7c/0.20m	8.48	40.13	0.037428	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	16.42	190.24	669.2
0.165028 0.010489 11.31 (1#7+1#10) 0.006556 7.07 2#7c/0.20m 8.48 40.13 0.037428 0.003333 3.60 #7c/0.20m 0.002083 2.25 #5c/0.20m 16.42 190.24 66946 0.003442 3.71 0.002456 2.69 Astin2) 4.31 0.002496 2.69 Astin2) 4.61 10.4 66946	0.165	028 0.01048	11.31	(1#7+1#10) c/0.20m	0.006556	7.07	2#7c/0.20m	8.48	40.13	0.037428	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	16.42	190.24	669.2
0.00342 3.71 0.002151 2.32 Ast(in2) Kgf 0.003994 4.31 0.002496 2.69 Ast(in2) Kgf	0.165	028 0.01048	9 11.31	(1#7+1#10) c/0.20m	0.006556	7.07	2#7c/0.20m	8.48	40.13	0.037428	0.003333	3.60	#7c/0.20m	0.002083	3 2.25	#5c/0.20m	16.42	190.24	6693
0.003442 3.71 0.002151 2.32 Ast(in2) Kef 0.00394 4.31 0.002496 2.69 Ast(in2) Kef																			
		0.00344	3.71		0.002151	2.32	Ast(in2)		Kgf		0.003994	4.31		0.00249(5 2.65	Ast(in2)		Kgf	

Kgf/m2 35.45

Kgf/m2 66.00 secciones doble refuerzo

A(m2)

30.55

CEIG

ICEIG

Fig. 8 REFUERZO LONG. EN LA DIRECCIÓN 2

20

5. Conclusiones

Se ha presentado un nuevo análisis 2-D de placas de cimentación sobre suelos estratificados con sus módulos de deformación volumétricos Mv(m²/Tf) usando una malla triangular de elementos finitos con matriz de rigidez de cada elemento de 9x9 y su respectivo vector de cargas 9x1 ocasionado por carga uniforme conocida q₀(Tf/m²). La Ecuación Matricial de Asentamientos [EMA][q_{zm}]= -[δ_{zi}], se realizó según Damy R.[4] usando cargas verticales desconocidas q_{zm} uniformemente repartidas sobre superficies poligonales de cualquier forma. El ensamblaje y solución del sistema completo de ecuaciones lineales con incógnitas δ_{zi} , θ_{xi} , θ_{vi}, q_{zm} se realizó según Deméneghi[5] usando un método directo sin iteraciones. Se calculó la matriz de resortes Kss[δ_{zi} , θ_{xi} , θ_{vi}](placa de concreto+suelo) debajo de las cargas concentradas Pi, según Molano[15] para usarse en cualquier software comercial y así determinar los asentamientos diferenciales de la Super-estructura. Se hizo un ejemplo numérico obteniéndose buena concordancia en el cálculo de presiones, asentamientos, momentos flectores y fuerzas cortantes con el modelo 1-D de Zeevaert [18] cuando se tienen en cuenta los esfuerzos de contacto en el sentido corto de la cimentación. Se realizó además, un análisis comparativo con ayuda del excelente software CSI-ETABS, suministrándole en cada nudo de la placa únicamente los valores de los resortes del suelo(Tf/m) obtenidos en esta investigación, sin usar el coeficiente de balasto(Tf/m3), calculando así asentamientos, fuerzas cortantes(Tf/m) y momentos flectores (Tf-m/m) más exactos que el modelo presentado por el autor, para su respectivo diseño estructural, con un factor de carga de FC=1.20 como ejemplo teórico para el diseño por flexión de secciones doble refuerzo que garantizan un adecuado factor de ductilidad por curvatura μ_{ϕ} .

6. Agradecimientos

El autor agradece a Lucía Arango Cardona y Asociados por asignar el personal necesario para realizar este proyecto de investigación.

7. Referencias

- [1] Alvéstegui C. C., "Diseño de Estructuras de Hormigón Armado", Editorial Universidad de Santiago de Chile, 3 ed, (2015), 1024 págs.
- [2] Bell K. and Holand I., "Finite element methods in stress analysis", Tapir, Norway, Chapter 7 pp 213-252, 1969.
- [3] Butlin G.A. and Ford R., "A compatible triangular plate bending finite element", *Int. J. Solids Structures*, Vol 6, 323-332, Pergamon Press, (1970).
- [4] Damy R. J. "Integración de las superficies de Boussinesq, Westergaard y Fröhlich, sobre superficies poligonales de cualquier forma, cargadas con fuerzas verticales uniformemente repartidas" *Revista de Ingeniería*, Vol. XV, No. 1, UNAM. 1985, pp 82-86.

- [5] Deméneghi C. A., Interacción Suelo-Estructura. *"Primer Encuentro Nacional Interacción Suelo-Estructura"*, Facultad de Ingeniería, Universidad de Medellín, Colombia, Nov. 6-9, 1-68, (1985).
- [6] Gonzáles A. J. L., "Método riguroso para el cálculo de asentamientos considerando la variación horizontal de los parámetros mecánicos del suelo", XXVII Reunión Nacional de Mecánica de Suelos e Ingeniería Geotécnica, Sociedad Mexicana de Ingeniería Geotécnica A.C., México, D.F., (Nov 2014)
- [7] Jeyachandrabose C. and Kirkhope J., "Explicit formulation for the A-9 triangular plate bending element", *Communications in applied Numerical Methods*, vol 1, 311-316,(1985a).
- [8] Jeyachandrabose C. and Kirkhope J., "An alternative explicit formulation for the DKT plate-bending element", *International Journal for Numerical Methods in Engineering*, vol 21, 1289-1293,(1985b).
- [9] Molano T. J. C., "Sobre un nuevo método de interacción suelo-estructura (ISE)", Sextas Jornadas Geotécnicas de la Ingeniería de Colombia, Sociedad Colombiana de Ingenieros, Bogotá, Colombia, 191-216, (1990).
- [10] Molano T. J. C., "Interacción suelo-estructura: una nueva aproximación", Interacción Suelo-Estructura y Diseño Estructural de Cimentaciones, Simposio, Sociedad Mexicana de Mecánica de Suelos, México, D.F., 103-113,(18 Sept 1991).
- [11] Molano Toro J. C., "Diseño Dúctil de Secciones Rectangulares de Hormigón Reforzado", X Jornadas Sudamericanas de Ingeniería Estructural, Porto Alegre, Brasil, 1993.
- [12] Molano Toro J. C., "Curvature Ductility of Reinforced Concrete Beams under Low and High Strain Rates", ACI Structural Journal, Vol 93(4), July-August 1996, pp 496-498.
- [13] Molano Toro J. C., "Coeficientes para el Cálculo de Vigas Rectangulares de Hormigón Doblemente Reforzadas según ACI 318-95", Colección Universidad de Medellín, No. 28, 1997, 66 páginas.
- [14] Molano Toro J. C., "Design of Reinforced Concrete Flexural Sections by Unified Design Approach", ACI Structural Journal, Vol 96(4), July-August 1999, pp 661.
- [15] Molano T. J. C., "Método de la Parrilla Finita (Finite Grid Method FGM) aplicado a zapatas y placas de cimentación sobre fundación elástica", XIX Jornadas Geotécnicas de la Ingeniería de Colombia, Sociedad Colombiana de Ingenieros, Bogotá, Colombia, (26-27 Agosto 2021).
- [16] Petyt M., "Introduction to finite element vibration analysis", 2nd Ed, Cambridge University Press, 518 pps,(2010).
- [17] Rao S.S., "The finite element method in engineering", Pergamon Press, (1982).
- [18] Zeevaert, L. "Interacción suelo-estructura de cimentaciones superficiales y profundas sujetas a cargas estáticas y sísmicas", Limusa, México (1980).