

PREDIMENSIONADO DE VIGAS DÚCTILES RECTANGULARES DE CONCRETO REFORZADO

Juan Carlos Molano Toro⁽¹⁾

¹ Ingeniero Civil, Universidad de Medellín, Colombia PMP, PMI-SP, Especialista en Proyectos juan.molanotoro1@gmail.com

Resumen

Se presenta la reformulación matemática de vigas doble refuerzo de concreto reforzado no confinado que garantiza una adecuada ductilidad por curvatura $\mu\phi=6$ with $\rho'/\rho \geq 0.625$, $\varepsilon cu=0.003$, h/dt=1.10, d'/dt=0.10, para el máximo momento flector Mu obtenido de las combinaciones de carga, obteniéndose así las dimensiones y cuantías definitivas de la sección en sólo dos pasos: a) calculando primero d_t y b) calculando luego As y A's. Se hace un análisis comparativo con ejemplos obtenidos de la literatura existente mediante el método estándar actual y el nuevo método con la ayuda de la Tabla 3 propuesta por el autor

Palabras clave: vigas doble refuerzo, factor de ductilidad por curvatura

Abstract

The mathematical reformulation of double reinforced unconfined reinforced concrete beams is presented that guarantees adequate ductility due to curvature $\mu\phi=6$ with $\rho'/\rho \geq 0.625$, $\varepsilon cu=0.003$, h/dt=1.10, d'/dt=0.10, for the maximum bending moment Mu obtained from the load combinations, thus obtaining the final dimensions and quantities of the section in just two steps: a) first calculating dt and b) then calculating As and A's. A comparative analysis is made with examples obtained from the existing literature using the current standard method and the new method with the help of Table 3 proposed by the author.

Keywords: double reinforced beams, curvature ductility factor.

1. Introducción

Para vigas de concreto no confinado y doble refuerzo, la resistencia a flexión y la ductilidad por curvatura μ_{ϕ} dependen de la cuantía del refuerzo a tensión ρ y la relación entre cuantías ρ'/ρ , siendo ρ' la cuantía del refuerzo en compresión. Park and Ruitong [10] calcularon las cuantías de refuerzo a tracción ρ para secciones doble refuerzo con valores de $\rho'/\rho = 0.5$ y $\rho'/\rho = 0.75$ obteniéndose factores de ductilidad por curvatura $\mu_{\phi} >= 8$. En esta investigación se propone calcular, en dos pasos, las dimensiones y cuantías definitivas de una viga doble refuerzo con $\mu_{\phi} = 6$ para un valor máximo (obtenido de las combinaciones de carga) de Mu para cada valor de la resistencia a la compresión F^c c del concreto no confinado(para esfuerzos en forma de bloque parabólico y bloque rectangular del ACI-318-95), con las ecuaciones propuestas por Park and Ruitong[10] y las del ACI-318-95 que se encuentran en los textos de concreto reforzado..

2. Metodología

2.1. Relación Esfuerzo-Deformación para Vigas Doble Refuerzo de Concreto no confinado

En la Fig. 1[10] se presentan las distribuciones de esfuerzo y deformación cuando el refuerzo en tracción alcanza la primera cedencia para bloque parabólico de esfuerzos en el concreto no confinado.

En la Fig. 2[9] se presentan las distribuciones de esfuerzo y deformación cuando el refuerzo en tracción alcanza la primera cedencia para bloque rectangular de esfuerzos en el concreto no confinado según ACI-318-95.

Fig.1 Sección de viga doble refuerzo en concreto no confinado sometida a Flexión, ref[10] pp 218

Fig. 2 Sección de viga doble refuerzo en concreto no confinado sometida a Flexión, ref[9] pp 204.

2.2. Requisitos de Ductilidad para Vigas según Código ACI-318-95

El código del ACI-318-95 tiene los siguientes requerimientos que afectan el factor de ductilidad por curvatura μ_{ϕ} (unidades en psi):

a) En miembros a flexión en todas las veces, si el acero de compresión p'está cediendo:

$$(\rho - \rho')/\rho_b \le 0.75$$
(1)
$$\rho_b = 0.85^* F' c * \beta_1 * \epsilon_{cu} * Es/[Fy*(Es* \epsilon_{cu} + Fy)] , \epsilon_{cu} = 0.003$$
(2)

b) En elementos a flexión de estructuras contínuas donde los momentos, calculados por teoría elástica, en los apoyos son incrementados o disminuídos en un valor de no más del $20[1.0-(\rho-\rho')/\rho_b]$ por ciento para permitir redistribución de momentos:

$$(\rho - \rho')/\rho_b \le 0.50$$
 (3)

- c) En miembros a flexión de pórticos dúctiles para los cuales las fuerzas de diseño relacionadas con movimientos sísmicos han sido determinadas sobre la base de disipación de energía en el rango no-lineal de respuesta, $\rho <=0.025$ y la resistencia por momento positivo en la cara del nudo no deberá ser menor que un medio de la resistencia por Momento negativo proporcionada en la cara ese nudo, es decir Mu⁺/Mu⁻>=0.50, ó en palabras de este autor $\rho'/\rho >= 0.50$, con $\rho' <=0.0125$.
- d) Park and Ruitong[10] proponen en la Tabla 1. las máximas cuantías de diseño a tracción para factores de ductilidad por curvatura de $\mu_{\phi} = 8$ y $\mu_{\phi} = 10$ que son alcanzadas cuando $\rho'/\rho = 0.50$ $\rho'/\rho = 0.75$, con d'/dt=0.10, h/dt=1.10, $\rho = As/(b_w * d_t)$, $\rho' = As'/(b_w * d_t)$, siendo b_w y dt = ancho y peralte o profundidad efectiva de la sección rectangular respectivamente, $\epsilon_{cu}=0.004$.

f,, psi (MPa)	1	$d_{i} = d$	40,000 (276	5)	N	60,000 (414)
f_{ϵ}^{\prime} , psi (MPa)		3000 (20.7)	4000 (27.6)	5000 (34.5)	3000 (20.7)	4000 (27.6)	5000 (34.5)
Maximum ρ when	For $\phi_{-}/\phi_{+} = 8$	0.023	0.028	0.033	0.0093	0.0116	0.0137
$\rho'/\rho \approx 0.5$	For $\phi_x/\phi_y = 10$	0.019	0.023	0.027	0.0067	0.0083	0.0100
Maximum ρ when	For $\phi_s/\phi_s = 8$	0.041	>0.045	>0.045	0.0118	0.0150	0.0180
$\rho'/\rho = 0.75$	For $\phi_x/\phi_y = 10$	0.034	0.041	0.051	0.0077	0.0100	0.0117

Tabla 1. Máximas cuantías en tracción para vigas que alcanzan μ_θ =8 y μ_θ =10 [10]

Park y Ruitong[10] pp223-224 también recomiendan para propósitos prácticos que las vigas doble refuerzo se diseñen con un factor de ductilidad por curvatura de μ_{ϕ} =8 para que las cuantías a tracción no sean tan pequeñas, pues las secciones de vigas serían demasiado grandes y costosas, con la ayuda de la siguiente ecuación:

 $\rho \leq k_1 [F'c(Ksi)+1.0Ksi)]/4.0Ksi$

obteniéndose la siguiente Tabla 2, con 3.0Ksi <= F'c <= 5.0 Ksi,:

Fv=60Ksi Fy=40 Ksi Fy=60Ksi Fy=40 Ksi k1=0.0093 k1=0.023 k1=0.0093 k1=0.023 $\rho'/\rho=0.5$ $\rho'/\rho=0.5$ ρ΄/ρ=0.75 ρ΄/ρ=0.75 μ₆=8 μ₆=8 μ₀=8 μ₀=8 1.75*k1*(F'c+1)/4 1.3*k1*(F'c+1)/4 F´c F´c F´c F´c ρ ρ ρ ρ k1*(F´c+1)/4 (c+1)/4 (%) (%) (%) (%) (Ksi) (Ksi) (Ksi) (Ksi) 3.00 1.21% 0.93% 2.30% 3.00 3.00 3.00 4.03% k1*(F 3.50 1.05% 3.50 2.59% 3.50 1.36% 3.50 4.53% 4.00 1.16% 4.00 2.88% 4.00 1.51% 4.00 5.03% ∥ V || V 4.50 1.28% 4.50 4.50 1.66% 4.50 5.53% 3.16% 5.00 1.40% 5.00 3.45% 5.00 1.81% 5.00 6.04% ď d, ď d

Tabla 2. Máximas cuantías en tracción para vigas que alcanzan $\mu_0 = 8$, con $\rho'/\rho = 0.50$ y $\rho'/\rho = 0.75$

El Ing. Estructural tendría que hacer varios tanteos de diseño para encontrar una sección de viga con las dimensiones adecuadas que se ajusten a estas cuantías dadas en la Tabla 1 y Tabla 2. Observando en ambas tablas que $\rho'/\rho=0.50$ y $\rho'/\rho=0.75$ el autor propone en esta investigación que se utilice un promedio para el valor $\rho'/\rho=0.625$, con $\mu_{\phi}=6$, $\epsilon_{cu}=0.003$, **Fy=60Ksi** obteniéndose las siguientes cuantías de la Tabla 3 con sus respectivos valores adicionales de R_n(adim)=Mu/[0.90*F´c*bw*dr²], Molano[7].

Se observan cuantías a tracción ρ casi idénticas con $\mu_{\phi} = 6$ y $\rho'/\rho = 0.625$ de la Tabla 3 cuando se comparan con las cuantías obtenidas con $\mu_{\phi}=8$ y $\rho'/\rho=0.50$ con Fy=60Ksi de la Tabla 2. Si el Ing. Estructural no quiere predimensionar con $\rho'/\rho=0.625$ lo puede hacer con $\rho'/\rho=0.50$ y $\rho'/\rho=0.75$ con ayuda de la Tabla 3.

(4)

			h/dt=1.1	.0, d'/dt=	0.10,	ε _{cu} =0.003,	Fy=60K	si	
			µ.+=6.0,	p'/p=0.625	JL4=6.0,	p'/p=0.50	Ju4=6.0,	p'/p=0.75	
e'c(MPa)	F'c(Ksi)	F'c(Tf/m2)	d	Rn(adim)	٩	Rn(adim)	d	Rn(adim)	Rn (adim) =Mu/(0.9*F'c*bw*d
20.7	3.0	2,109.24	0.86%	0.158444	0.80%	0.147598	0.94%	0.172858	Mu(Tf-m)
24.1	3.5	2,460.78	1.00%	0.158123	0.93%	0.147080	1.09%	0.171825	dt(m)
27.6	4.0	2,812.33	1.14%	0.157529	1.06%	0.146027	1.24%	0.171046	bw(m)
31.0	4.5	3,163.87	1.28%	0.156808	1.12%	0.146432	1.39%	0.170505	F'c(Tf/m2)
34.5	5.0	3,515.41	1.41%	0.156019	1.31%	0.145174	1.53%	0.169012	dt=sqrt[Mu/(0.9*F'c*b _w *Rn)]
37.9	5.5	3,866.95	1.54%	0.155088	1.44%	0.144779	1.67%	0.167795	As(m2)=p*bw*dt
41.4	6,0	4,218.49	1.67%	0.154148	1.56%	0.143960	1.81%	0.166786	A's(m2)=(p'/p)*As
44.8	6.5	4,570.03	1.80%	0.153372	1.68%	0.143268	1.95%	0.165934	
48.3	7.0	4,921.57	1.93%	0.152628	1.81%	0.143053	2.08%	0.164089	
51.7	7.5	5,273.11	2.06%	0.151850	1.93%	0.142850	2.22%	0.163664	
55.2	8.0	5,624.65	2.18%	0.151147	2.05%	0.142314	2.35%	0.162594	
58.6	8.5	5,976.19	2.31%	0.150494	2.17%	0.141795	2.48%	0.161525	
62.1	9.0	6,327.73	2.43%	0.149811	2.29%	0.141332	2.61%	0.160575	
65.5	9.5	6,679.27	2.55%	0.149058	2.40%	0.140302	2.73%	0.159155	
69.0	10.0	7,030.81	2.67%	0.148173	2.52%	0.140012	2.86%	0.158420	

Tabla 3. PREDIMENSIONADO DE VIGAS RECTANGULARES DOBLE REFUERZO

2

Nota: si se usa E_{cu}=0.004, Ju₆ toma el valor de 8, quedando todo igual

281.232 Kgf/cm2	4218.488 Kgf/cm2	0.003	0.000000 <= (0.8000 = 0.957703)	0.157531	0.999679	5.986022	0.138155 =< 0.318750 0.K.	6.016707	120502.0	071500 T	007TT0.0	1 100000	T.T.O.O.O.T.T	si/As t ro i	.625000 0.007125	.000000 0.011400	0.90000	0.900000	12.328319	0.274629 0.399905 0.149			si <u>Mn=3008.93K-1n</u> , Rn=0.157531 - <u>19.94"</u> , d'/dt=0.1, d'= 0.1*dt=1.	, A's=(ro'/ro)*As=1.49in2
F(c) =	F (y) =	ec (u) =	(Q)n = Pn/(Fc.bw.dt) =	R(n) = Mn/(Fc.bw.dt.dt) =	Rn_aci/Rn_park =	Duct_aci	(v) = a/dt =	Ductilidad por Curvatura	= uw/wu	ku aci/ku park = 1	$(F) 0 = Asu/(DW.uc) = -\frac{1}{2} - \frac{1}{2} - \frac$	c(a) has de retuerzo	(n)/dt	capa i di/dt As	1 0.100000 0.	2 1.000000 1.	[0.70 =< fi =< 0.9] =	$[0.75 = 4 \text{ fi}_0 = 0.9] =$	(porcent redistr) =	X/Xb = ro/ro_b = ro*[1.0-(ro'/ro)]/ro b =	RESULTADOS TABLA		<u>bw=12"</u> , F'c=4ksi, Fy=60Ki dt=sqrt[Mn/(Rn*F'c*bw)]=	As=0.0114*bw*dt=2.39in2
caf/cm2	torf/cm2		<= (0.80no = 1.069036)				< 0.318750 O.K.								D DOBEDE	061/10.0					HANICS AND DESIGN		i, Fy=60Ksi K-ft	
= 281.232	- 4218 488 -	= 0.00.003	0.000000 =	= 0.227433	= 0.999561	= 3.442670	= 0.215784 =	= 3.455612	= 0.972445	= 1.003759	= 0.017190	= 2	= 1.142857	Acilac +	D EDDAD	1.000000	000006 0 =	0 900000 =	= 8.017632	= 0.428942 = 0.603028 = 0.301	CONCRETE MECI	NO	(.5", F'c=4ks (-in) Mn=251	2
			Pn/(Fc.bw.dt)	Mn/(Fc.bw.dt.dt)	/Rn park	ici -	= a/dt	lidad por Curvatura	а : : : : : : : : : : : : : : : : :	i/ku_park	= Asd/(bw.dt)	s de refuerzo	Ŧ	4: /4+	0 1 1 2067	1.000000	=< fi =< 0.91		ent redistr)	 	p 246 REINFORCED (WIGHT, 2016, PEARS	2", dt=17.5", d'=2 50.74K-ft=3008.93K	3.61in2, As=1.80in

Los resultados para siete ejemplos, tomados de la literatura existente, se presentan desde la Figura 3 hasta la Figura 9:

3. Presentación de Resultados

=

a) STANDARD DESIGN	(UNIC	CONFINED C	ONCRETE)	h) warte neston (1	INCONFINED CC	NCRETEN
F(c)	IJ	281.233 1	kqf/cm2	L'ol	= 281 23	Koff/cm2
F (y)	I	4218.488 1	kgf/cm2	F (V)	= 4218.488	Kaf/cm2
ec (n)	1	0.003		ec (n)	= 0.00	
(Q)n = Pn/(Fc.bw.dt)	H,	0.000000	<=(0.800 = 0.986252)	(Q) n = Pn/(Fc.bw.dt)	= 0.000000	<pre></pre> <pre>< < (0.8Qno = 0.957703)</pre>
R(n) = Mn/(Fc.bw.dt.dt)	I	0.155319		R(n) = Mn/(Fc.bw.dt.dt)	= 0.157527	
Rn aci/Rn park	I	0.999285		Rn aci/Rn park	= 0.999653	
Duct aci	8	4.406813		Duct aci	= 5.987324	
(v) = a/dt	J	0.182965 =	=< 0.318750 0.K.	(v) = a/dt	= 0.138145) =< 0.318750 O.K.
Ductilidad por Curvatur	ca=	4.462566		Ductilidad por Curvatu	ra= 6.018078	
My/Mn	1	0.969051		My/Mn	= 0.963587	
ku aci/ku park	H.	1.012652		ku aci/ku park	= 1.005137	
(r)o = Asd/(bw.dt)	I	0.011500		(r)o = Asd/(bw.dt)	= 0.011400	
c(a)pas de refuerzo	II,	2		c(a)pas de refuerzo	= 2	
(h) /dt	I	1.173930		(h) / dt	= 1.100000	
cana i di/dt	Aci	/As +	i ur	rana i di/dt	Dei/De +	i or
1 0.173930	0.4	44000	0.005106	1 0.10000	0.625000	0.007125
2 1.00000	1.0	00000	0.011500	2 1.00000	1.000000	0.011400
[0.70 =< fi =< 0.9]	I	0.900000		[0.70 = 4i = 0.9]	= 0.900000	
$[0.75 = < fi \circ = < 0.9]$	I	0.900000		$[0.75 = 4i \circ = 0.9]$	= 0.900000	
(porcent redistr)	II	9.840072		(porcent redistr)	= 12.32864	61
x/xb	H	0.363703		x/xb	= 0.274617	2
ro/ro b	1	0 403412		ro/ro h	= 0 30000	
101101		TTECOLO				
ro*[1.0-(ro'/ro)]/ro b	Ш	0.224		ro*[1.0- (ro'/ro)]/ro_b	= 0.143	
RESULTADOS DC-CAD				RESULTADOS TABLA		
bw=0.10m, h=0.30m, d'=0	.044	4m, dt=0.25	56m, d'/dt=0.17393.			
h/dt=1.17393 F'c=2812.3	2Tf/1	n2 Fy=42184	.88Tf-m, Mn=2.853Tf-m	bw=0.10m, F'c=2812.331	f/m2, Mn=2.85	3Tf-m, Rn=0.157527
$Rn = Mn / [F'c*bw*dt^2] = 0.1$	5531	6		dt=sqrt[Mn/(Rn*F'c*b	w)]=0.25378m	, h=0.28m, d'=0.028m
As=0.0115*0.10*(0.2556)	=2.9	39x10 ⁻⁴ m2=	0.4556in ²	As=0.0114*0.10*025378=	2.8931×10 ⁻⁴ m2	$= 0.44843in^{2}$
A's=(ro'/ro)*As=0.444*(0.455	6=0.2022in	2	A' s = (ro' / ro) * As = 0.625	0.44843=0.280	27 in ²
Lo= 4.45m, wo=0.700Tf/m	n, so	=0.70m				

Fig. 4 EJEMPLO 2

a)STANDARD DESIG	= =	281.233	CONCRETE) Kgf/cm2		b) TABLE DESIGN F(c)	(UNCONI	71NED CON 281.233	VCRETE) Kaf/cm2	
F (y)	1	4218.488	Kgf/cm2		F(V)	1	4218.488	Kaf/cm2	
ec (n)	1	0.003				1	0.003		
(Q)n = Pn/(Fc.bw.dt)	Ш	0.00000.0	<= (0.8Qno =	1.093797)	$\frac{1}{(0)n} = \frac{Pn}{Fc.bw.dt}$	II.	0.000000	<=(0.8Qno =	0.957703)
R(n) = Mn/(Fc.bw.dt.dt)	I	0.265788			R(n) = Mn/(Fc.bw.dt.d)	t) =	0.157527		
Rn aci/Rn park	I	0.998547			Rn aci/Rn park	I	0.999653		
Duct aci	1	3.095475			Duct aci	I	5.986898		
(v) = a/dt	I	0.230766	=< 0.318750	0.K.	(v) = a/dt	1	0.138149	=< 0.318750	0.K.
Ductilidad por Curvatur	a=	3.086899			Ductilidad por Curvat	ura=	6.017651		
My/Mn	1	0.969871			My/Mn	1	0.963572		
ku aci/ku park	1	0.997230			ku aci/ku park	1	1.005137		
(r)o = Asd/(bw.dt)	1	0.020100			$(r) \circ = Asd/(bw.dt)$	II.	0.011400		
c(a)pas de refuerzo	1	2			c(a)pas de refuerzo	E	2		
(h)/dt	II.	1.120000			(h) /dt	I	1.100000		
capa i di/dt	Asi,	/As t	ro i		capa i di/dt	Asi/	As t	ro i	
1 0.120000	0.40	60000	0.009246		1 0.100000	0.62	5000	0.007125	
2 1.000000	1.0(00000	0.020100		2 1.000000	1.00	0000	0.011400	
[0.70 =< fi =< 0.9]	Ш	0.90000			[0.70 =< fi =< 0.9]	I	0.90000		
[0.75 = 4 fi 0 = 0.9]	I	0.900000			$[0.75 = 4 \text{ fi} \circ = 4 0.9]$	I	0.900000		
(porcent redistr)	I	7.185689			(porcent redistr)	II	12.328649		
x/xb	II	0.458724			X/Xb	I	0.274617		
ro/ro b	-	0.705095			ro/ro b		0.399905		
ro*[1.0-(ro'/ro)]/ro_b	1	0.380			ro*[1.0-(ro'/ro)]/ro_]	 	0.149		
ro'/ro=Mu+/Mu-=16.44T	f-m/	32.02Tf-n	<u>n=0.51=0.46</u>	(ZMnb)	ro'/ro=Mu+/Mu-=20.87	Tf-m/3	2.14Tf-m	=0.649=0.625	(ZMnb)
RESULTADOS DC-CAD					DECHTANOC TARIA				
bw=0.40m, h=0.40m, d'	=0.0	428m, dt=	=0.3572m, h/	dt=1.12	Smoc ac an economic con	Ē	C 0100 -	0 0 3 0	20121
F'c=2812.32Tf/m2, Fy=	4218	4.88Tf/m2	2, Mu=34.32T	f-m	dt=sqrt[Mn/(Rn*F'c*b	w)]=0.	46388m	d'=0.1*dt=0.	.0463m
Rn=34.32/[0.9*2812.32	*0.4	0*(0.357;	$2)^2 = 0.26578$	8	h=1.1*dt=0.51m=0.50m	, dt=0	.50m/1.1	0=0.4545m	
As=0.0201*0.40x0.3572 A's= (ro'/ro)*As=0.46	=28.	$718m^{-4} = 4$ 5=2.04in ²	1.45in ²		bw=0.40m, h=0.50m As=0.0114*0.40*0.454	5=20.7	2m ⁻⁴ =3.2	1in ²	
Lo=5.78m, so=4.775m,	qd=1	OTE/m2			A's=(ro'/ro)As=0.625	*3.21=	2.00in ²		

XL Jornadas Sudamericanas de Ingeniería Estructural

Fig. 5 EJEMPLO 3

a) STANDARD DESIGN (UNCO	NFINED COL	NCRETE)	b) TABLE DESIGN (U	NCONFINE	D CONCRETE)	
F(c)	I	210.924 K	gf/cm2	F(c)	= 210	924 Kqf/cm2	
F (y)	1	2812.320 K	gf/cm2	F (V)	= 2812	320 Kqf/cm2	
ec (n)	H.	0.003		ec (n)	=	.003	
(Q)n = Pn/(Fc.bw.dt)	1	0.000000	<= (0.8Qno = 1.357390)	(Q) n = Pn/(Fc.bw.dt)	= 0.00	0000 <= (0.80no = 1.165068)	
R(n) = Mn/(Fc.bw.dt.dt)	I	0.446250		R(n) = Mn/(Fc.bw.dt.dt)	= 0.31	.0729	
Rn aci/Rn park	I	1.000590		Rn aci/Rn park	= 0.99	86666	
Duct aci	1	1.000000		Duct aci	= 6.00	8348	
(v) = a/dt	1	0.311986 =	< 0.318750 O.K.	(v) = a/dt	= 0.16	57239 =< 0.318750 0.K.	
Ductilidad por Curvatur.	a=	1.000000		Ductilidad por Curvatur	ca= 5.99	16995	
My/Mn	1	0.520427		My/Mn	= 0.95	0430	
ku aci/ku park	U.	0.995840		ku aci/ku park	= 0.99	8110	
(r)o = Asd/(bw.dt)	1	0.038955		(r)o = Asd/(bw.dt)	= 0.02	5700	
c(a)pas de refuerzo	II.	2		c(a)pas de refuerzo	Ш	2	
(h)/dt	1	1.125000		(h) /dt	= 1.10	0000	
capa_i di/dt	Asi	/As_t	roi	capa_i di/dt	Asi/As_t	roi	
1 0.125000	0.5	22753	0.020364	1 0.100000	0.625000	0.016062	
2 1.000000	1.0	00000	0.038955	2 1.000000	1.000000	0.025700	
[0.70 =< fi =< 0.9]	I	000000000000		10.70 = 4 fi = 0.91	0.90	0000	
$[0.75 = 4 \text{ fi} \circ = 4 0.9]$	Ш	0.900000		$10.75 = 41 \circ = 0.91$	= 0.90	0000	
(porcent redistr)	1	2.675626		(porcent redistr)	= 10.7	13319	
		COLLON O					
ax/x	1	06/050.0		dX/X	= 0.28	/212	
ro/ro_b	1	1.049404	{ }	ro/ro_b	= 0.69	2338	
ro*[1.0-(ro'/ro)]/ro_b	1	0.500		ro*[1.0-(ro'/ro)]/ro_b	= 0.25	0	
EXAMPLE 4.4 pp87 REIN PARK AND PAULAY, 1975	, JC	CED CONCRE	TE STRUCTURES	RESULTADOS TABLA			
bw=11", dt=20", d'=2.	5",	F'c=3Ksi,	Fy=40Ksi	<u>bw=11"</u> , F'c=3Ksi, Fy=4	OKsi (Mn=	:5932.80K-in) Rn=0.310729	
(Mn=5932.80K-in) Mn=58	.068	50K-in		dt=sqrt[Mn/(Rn*F'c*bw)]= 24.053	3", d'/dt=0.1, d'= 0.1*dt=2.40	05"
As=8.57in2, A's=4.46ir	12	645 *12		As=0.0257*bw*dt=6.79i	n2, A's=((ro'/ro)*As=4.24in2	
			Fig. 6 E.	JEMPLO 4			

									and the second se		
F(c)	l	210.924 K	gf/cm2		F(c)		I.	210.924	Kgf/cm2		
F(v)	I	2812.320 K	af/cm2		F (y)		I	2812.320	Kgf/cm2		
ec (n)	1	0.003			ec (n)		I	0.003			
(0)n = Pn/(Fc.bw.dt)	-	0.000000	<= (0.80no =	1.243701)	(0)n = Pn/(Fc.)	bw.dt)	I	0.000000	<=(0.8Qno = 1.	165068))	
R(n) = Mn/(Fc.bw.dt.dt)	1	0.403592			R(n) = Mn/(Fc.)	bw.dt.dt)	-	0.310729			
Rn aci/Rn park	l	0.999666			Rn aci/Rn park		1	866666.0			
Duct aci	I	2.479110			Duct aci		1	6.008348			
(v) = a/dt	1	0.347870 =	< 0.318750	N.K.	(v) = a/dt		1	0.167239	=< 0.318750	0.K.	
Ductilidad por Curvature	a=	2.488791			Ductilidad por	Curvatur	a=	5.996995			
Mv/Mn	1	0.982292			My/Mn		1	0.950430			
ku aci/ku park		1.003905			ku aci/ku park	<u> </u>	I	0.998110			
(r)o = Asd/(bw.dt)		0.035455			$(r) \circ = Asd/(bw$.dt)	II	0.025700			
c(a) bas de refuerzo	1	2			c(a) pas de refu	erzo	1	2			
(h) /dt	I.	1.100000			(h)/dt		JI	1.100000			
di/dt	Aciv	10c +	i or		capa i di/dt		Asi,	As t	ro i		
	U AC	00000	0 014182		1 0.10000	0	0.6	25000	0.016062		
					1 00000		1 0	00000	0 075700		
2 I.000000	1.0	00000	0.03544		COOPT Z	2	0.T	00000	001020.0		
$10.70 \neq fi \neq 0.91$	1	0.846425			[0.70 =< fi =	< 0.9]	I	0.900000			
10.75 =< fi a =< 0.91	1	0.859819			[0.75 =< fi o =	< 0.9]	I	0.900000			
	1	0 602060			(norcent redis	tr)	1	10.713319			
(borcent reatser)	í.	006700.0				Ì					
to for	1				x/x		I	0 287212			
	i	#7#/6C.0			to / to		I	12202.0	1		
ro/ro D	1	111666.0				4 00/110	1	0.050	Ŋ		
ro*[1.0-(ro'/ro)]/ro b	11	0.573			I/.01)_0'T].01	a_01/[(0	I	607.0			
3 13 pp63 REINFORCED	CON	CRETE FUND	AMF:NTAT.S		BESILTATIOS TAR	UT.A					
2nd Ed. FERGUSON P. M	1.1	965. JOHN	WILEY								
hun-11" dt-20" d1-2		PI A-3Ket	Et-Ankei		bw=11", F'c=3K	(si, Fy=	10Ks	Mn=5363	.28K-in , Rn=0	0.310729	
·	-	TEND-D I	Tevint-La							00 0 0	
(Mn=446.94K-ft=5363.2	1-X8	(n) Mn=5327	.41K-in		dt=sqrt[Mn/(R	n*F'c*bw]=2:	.8.", d'	/dt=0.1, d'=	0.1*dt=2.28	1
As=7.80in2, A's=3.12i1	n2				As=0.0257*bw*	dt=6.46i	n2,	A' S=(ro'/	ro) *As=4.04in	2	
	ľ				E C LOUIS						
				FIG. / EU	C OTAWA						

a) STANDARD DESIGN (UNC	CONFINED CONCRETE)	b) TABLE DESIGN (UN	CONFINED CON	CRETE)	
F(c) =	351.540 Kaf/cm2	F(c)	= 351.540	Kgf/cm2	
F(y) =	4218.488 Kgf/cm2	F (y)	= 4218.488	Kgf/cm2	
ec (n) =	0.003	ec (n)	= 0.003		
(Q)n = Pn/(Fc.bw.dt) =	0.000000 <= (0.8000 = 1.131143)	(Q)n = Pn/(Fc.bw.dt)	= 0.000000	<=(0.8Qno = 0.	.952380)
R(n) = Mn/(Fc.bw.dt.dt) =	0.265591	R(n) = Mn/(Fc.bw.dt.dt)	= 0.156019	5	
Rn aci/Rn park =	1.000927(0.998629)[1.001115]	Rn_aci/Rn_park	= 1.000393		
Duct aci _ =	3.714123(1.715145)[3.962797]	Duct_aci	= 5.785187		
(v) = a/dt =	0.187565(0.354341)[0.177717]	(v) = a/dt	= 0.134652	=< 0.300000	0.K.
Ductilidad por Curvatura=	3.828570(1.834923)[4.076240]	Ductilidad por Curvatur	a= 6.016087		
Mv/Mn =	0.965322(0.998625)[0.965732]	My/Mn	= 0.962697		
ku aci/ku park =	1.030814(1.069836)[1.028627]	ku aci/ku park	= 1.039912		
$(r) \circ = Asd/(bw.dt) =$	0.024704(0.026755)[0.024653]	$(r) \circ = Asd/(bw.dt)$	= 0.014100		
c(a) pas de refuerzo =	2	c(a)pas de refuerzo	= 2		
(h) /dt =	1.115385	(h) /dt	= 1.100000		
capa i di/dt Asi/As t	ro i	5			
1 0.115385 0.693333	0.017128	capa_i di/dt	Asi/As t_	roi	
2 1.000000 1.000000	0.024704	1 0.100000	0.625000	0.008813	
capa i di/dt Asi/As t	ro i	2 1.000000	1.000000	0.014100	
1 0.115385 (0.066598	(0.001782)				
2 1.000000 1.000000	0.026755)	[0.70 = 4i = 0.9]	0.900000 =		
capa i di/dt Asi/As t	ro i	$[0.75 = 4i \circ \pi 0.9]$	= 0.900000		
1 0.115385 F0.7817 <u>3</u> 7	1 [0.019272]	1.0			
2 1.000000 1.000000	[0.024653]				
		, , , , , , , , , , , , , , , , , , ,			
(porcent redistr) =	8.933651 (0.000000) [9.514707]	(porcent realstr)	70000017T =		
= qx/xp	0.396151(0.748393)[0.375350]	x/xb	= 0.284393		
ro/ro b	0.736616(0.797759)[0.735091]	ro/ro b	= 0.420427		
ro*[1.0-ro'/ro)]/ro b =	0.2258 (0.7446) [0.1604]	ro*[1.0-(ro'/ro)]/ro b	= 0.157		
				51	
EXAMPLE 3.11.1 pp 80, REINF CHU KIA WANG et Al, 2018 OX	ORCED CONCRETE DESIGN FORD UNIVERSITY PRESS	RESULTADOS TABLA			
bw=14", dt=26", d'=3", F'c=	-5Ksi, Fy=60Ksi	bw=14", F'c=5Ksi, Fy=60	Ksi Mn=12573.3	3K-in Rn=0.15	6019
Mn=12573.33K-in		dt=sqrt[Mn/(Rn*F'c*bw)]	=33.9302", d'	/dt=0.1, d'=	0.1*dt=3.393
As=8.99in2(9.73in2)[8.97in2	2], A's=6.23in2(0.64in2)[7.01in2]	As=0.0141*bw*dt=6.69in2	. A' s=(ro'/r	o) *As=4.18in2	

a) STANDARD DESIGN	(UNCC	DNFINED CONC	CRETE)	b) TABLE DESIGN (UN	ICONFINED CON	ICRETE)	
F(c)	1	203.894 Kat	f/cm2	F (c)	= 203.894	Kgf/cm2	
F (y)	1	2812.320 Kgi	f/cm2	F (y)	= 2812.320	Kgf/cm2	
ec (n)	I.	0.004		ec (n)	= 0.003		
(0) n = Pn/(Fc.bw.dt)	"	0.000000 <=	=(0.80no = 0.954750)	(Q)n = Pn/(Fc.bw.dt)	= 0.000000	<= (0.8Qno = 1.	166967)
R(n) = Mn/(Fc.bw.dt.dt)	= (0.172235		R(n) = Mn/(Fc.bw.dt.dt)	= 0.311440		
Rn aci/Rn park	"	1.004415		Rn aci/Rn park	= 0.999989		
Duct aci	I	11.356096		Duct aci	= 6.012693		
(v) = a/dt	1	0.132681 =<	0.377778 0.K.	(v) = a/dt	= 0.167083	=< 0.318750	o.K.
Ductilidad por Curvatu	ra=	12.171947		Ductilidad por Curvatur	ca= 6.003056		
My/Mn	1	0.947281		My/Mn	= 0.950470		
ku aci/ku park	I.	1.071843		ku aci/ku park	= 0.998397		
(r)o = Asd/(bw.dt)	1	0.013538		$(r) \circ = Asd/(bw.dt)$	= 0.024900		
c(a) pas de refuerzo	I	2		c(a)pas de refuerzo	= 2		
(h) /dt	Ш	1.094828		(h)/dt	= 1.100000		
				capa i di/dt	Asi/As t	roi	
	HSH O	1 HS C	0 006760	1 0.100000	0.625000	0.015562	
2 1.00000	1.0	00000	0.013538	2 1.000000	1.000000	0.024900	
[0.70 =< fi =< 0.9]	1	0.900000		[0.70 = fi = 0.9]	0.900000 =		
$10.75 = \langle fi \circ = \langle 0.9 \rangle$	1	0.900000		$[0.75 = 4 \text{ fi} \circ = 4 0.9]$	= 0.900000		
(porcent redistr)	I	12.632326		(porcent redistr)	= 10.72195	9	
x/xb	I	0.209920		x/xb	= 0.286945		
ro/ro b	1	0.377276		ro/ro_b	= 0.693916		
ro*[1.0-(ro'/ro)]/ro_b		0.188638		ro*[1.0-(ro'/ro)]/ro_b	= 0.346958		
PP 174, "DISEÑO DE EST	RUCTU	RAS DE HORMIC	GÓN REFORZADO",	RESULTADOS TABLA			
3a. Ed, ALVESTEGUI, C.	c., 2	015, EDITORIA	AL USACH.	bw=0.25m, F´c=2038.936t	f/m2. Mn=29.5	33Tf-m.	
bw=0.25m, <u>dt=0.580m</u> , F Mn=Rn*F ^c c*bw/dt*dt=0.1	72235	38.936Tf/m2, *2038.936*0.2	Fy=28123.256Tf/m2 25*0.580*0.580=29.533Tf-m	<u>dt=sqrt[Mn/[Rn*F'c*bw]]</u> <u>d'=0.1*dt=0.043m, As=0.</u>	=sqrt[29.533/ 0249*bw*dt=26	(0.311440*2038.9 .85cm2, A's=(ro'	36*0.25)]= 0.431m /ro)As=16.78cm2
=289.86kN-m, As=19	. 63cm	2, A's=9.81	.5cm2				

FIG. 9 EJEMPLO 7

4. Análisis de Resultados

Ejemplo 1.

Tomado de [11]Wight J.K, "Reinforced Concrete. Mechanics and Design", (7th ed.), Pearson, England. 2016, pp 246. Los Datos de Entrada y Análisis de Resultados se muestran en la Fig. 3.

En la Fig 3a) se observa el Diseño Estándar con bw=12", h=dt+d'=20", μ_{ϕ} =3.45, ρ'/ρ = 0.50, As=3.61in2, A's=1.80in2 y en la Fig. 3b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=12", h=dt+d'=21.93", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=2.39in2, A's=1.49in2 con diferencia de Δ h=21.93"-20"=1.93", Δ As=2.39in2-3.61in2= -1.22in2, Δ A's=1.49in2-1.80in2= -0.31in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad.

Ejemplo 2.

Tomado de Resultados del Programa de Computador DC-CAD para Edificio de 14 Pisos. Los Datos de Entrada y Análisis de Resultados se muestran en la Fig. 4.

En la Fig 4a) se observa el Diseño Estándar con bw=0.10m, h=dt+d'=0.30m, μ_{ϕ} =4.46, ρ'/ρ = 0.444, As=0.455in2, A's=0.202in2 y en la Fig. 4b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=0.10m, h=dt+d'=0.28m, μ_{ϕ} =6, con ρ'/ρ = 0.625, As=0.448in2, A's=0.280in2 con diferencia de Δ h=0.28m-0.30m=-0.02m, Δ As=0.448in2-0.455in2= -0.007in2, Δ A's=0.280in2-0.202in2= +0.078in2, igualando la cantidad de acero y mejorando la ductilidad.

Ejemplo 3.

Tomado de Resultados del Programa de Computador DC-CAD para Edificio de 14 Pisos. Los Datos de Entrada y Análisis de Resultados se muestran en la Fig. 5.

En la Fig 5a) se observa el Diseño Estándar con bw=0.40m, h=dt+d'=0.40m, μ_{ϕ} =3.08, ρ'/ρ = 0.46, As=4.45in2, A's=2.04in2 y en la Fig. 5b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=0.40m, h=dt+d'=0.51m, μ_{ϕ} =6, con ρ'/ρ = 0.625, As=3.21in2, A's=2.0in2 con diferencia de Δ h=0.51m-0.40m=0.11m, Δ As=3.21in2-4.45in2= -1.24in2, Δ A's=2.02in2-2.04in2= -0.02in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad.

Ejemplo 4.

Tomado de [9]Park R, and Paulay T., "Reinforced Concrete Structures", John Wiley & Sons, New York, 1975, pp 87. Los Datos de Entrada y Análisis de Resultados se muestran en la Fig. 6.

En la Fig 6a) se observa el Diseño Estándar con bw=11", h=dt+d'=22.5", μ_{ϕ} =1.0, ρ'/ρ = 0.522, As=8.57in2, A's=4.46in2 y en la Fig. 6b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=11", h=dt+d'=26.46", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=6.79in2, A's=4.24in2 con diferencia de Δ h=26.46"-22.5"=3.96", Δ As=6.79in2-8.57in2= -1.78in2, Δ A's=4.24in2-4.46in2= -0.22in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad.

Ejemplo 5.

Tomado de [4]Ferguson P. M, "Reinforced Concrete Fundamentals", (2nd ed.), John Wiley & Sons, New York, 1965, pp 63. Los Datos Entrada y Análisis de Resultados se muestran en la Fig. 7.

En la Fig 7a) se observa el Diseño Estándar con bw=11", h=dt+d'=22.0", μ_{ϕ} =1.0, ρ'/ρ = 0.400, As=7.80in2, A's=3.12in2 y en la Fig. 7b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=11", h=dt+d'=25.16", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=6.46in2, A's=4.04in2 con diferencia de Δ h=25.16"-22.0"=3.16", Δ As=6.46in2-7.80in2= -1.34in2, Δ A's=4.04in2-3.12in2= +0.92in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad

Ejemplo 6 (en tres partes).

Tomado de [3]Chu-Kia Wang, Charles G. Salmon, José A. Pincheira and Gustavo J. Parra-Montesinos, "Reinforced Concrete Design", (8th ed.), Oxford University Press, New York, 2018, example 3.11.1, pp 80. Los Datos de Entrada y Análisis de Resultados se muestran en la Fig. 8.

Parte 1-En la Fig 8a) se observa el Diseño Estándar con bw=14", h=dt+d'=29.0", μ_{ϕ} =3.82, ρ'/ρ = 0.693, As=8.99in2, A's=6.23in2 y en la Fig. 8b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=14", h=dt+d'=37.32", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=6.69in2, A's=4.18in2 con diferencia de Δ h=37.32"-29.0"=8.32", Δ As=6.69in2-8.99in2= -2.30in2, Δ A's=4.18in2-6.23in2= -2.05in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad para la primera parte del ejemplo.

Parte 2-En la Fig 8a) se observa el Diseño Estándar con bw=14", h=dt+d'=29.0", μ_{ϕ} =1.83, ρ'/ρ = 0.0666, As=9.73in2, A's=0.64in2 y en la Fig. 8b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=14", h=dt+d'=37.32", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=6.69in2, A's=4.18in2 con diferencia de Δ h=37.32"-29.0"=8.32", Δ As=6.69in2-9.73in2= -3.04in2, Δ A's=4.18in2-0.64in2= +3.54in2, aumentando la cantidad de acero notablemente y mejorando la ductilidad para la segunda parte del ejemplo.

Parte 3-En la Fig 8a) se observa el Diseño Estándar con bw=14", h=dt+d'=29.0", μ_{ϕ} =4.07, ρ'/ρ = 0.781, As=8.97in2, A's=7.01in2 y en la Fig. 8b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=14", h=dt+d'=37.32", μ_{ϕ} =6, con ρ'/ρ = 0.625, As=6.69in2, A's=4.18in2 con diferencia de Δ h=37.32"-29.0"=8.32", Δ As=6.69in2-8.97in2= -2.28in2, Δ A's=4.18in2-7.01in2= -2.83in2, disminuyendo la cantidad de acero notablemente y mejorando la ductilidad para la tercera parte del ejemplo.

Ejemplo 7.

Tomado de [1]Alvéstegui, C. C., "Diseño de Estructuras de Hormigón Reforzado", (3 ed.), Editorial USACH, 2015, pp 174. Los Datos Entrada y Análisis de Resultados se muestran en la Fig. 9.

En la Fig 9a) se observa el Diseño Estándar con bw=0.25m, h=dt+d'=0.635, μ_{ϕ} =12.17, ρ'/ρ = 0.500, As=19.63cm2, A's=9.815cm2, <u>Fy=28123.25Tf/m2</u> y en la Fig. 9b) se observa el Nuevo Diseño con los nuevas dimensiones de la sección con ayuda de la Tabla 3: bw=0.25m, h=dt+d'=0.474m, μ_{ϕ} =6, con ρ'/ρ = 0.625, As=26.85cm2, A's=16.78cm2 con diferencia de Δ h=0.474-0.635= -0.161m, Δ As=26.85-19.63= 7.22cm2, Δ A's=16.78-9.815= +6.96cm2, aumentando la cantidad de acero notablemente y bajando la ductilidad

5. Conclusiones

La ductilidad de vigas de concreto reforzado puede ser fácilmente obtenida con la ayuda de la Tabla 3 usando la teoría de la relación momento curvatura de los autores Park and Ruitong[10] pp 224. Cómo era de esperarse el factor de ductilidad por curvatura μ_{ϕ} es incrementado si la cuantía ρ del refuerzo a tracción es disminuída y la cuantía ρ ' del refuerzo a compresión es aumentada. Para asegurar un adecuado factor de ductilidad por curvatura μ_{ϕ} =6 con ϵ_{cu} =0.003, ρ'/ρ = 0.625, h/dt=1.10, d'/dt= 0.10, Fy=60Ksi, con la ayuda de los valores de Rn(adim) de la Tabla 3 es posible mejorar el diseño actual o estándard de vigas de concreto doble refuerzo para la combinación de carga más desfavorable obteniéndose las nuevas dimensiones y cuantías definitivas de la viga en sólo dos pasos (forma rápida) como se demuestra en los ejemplos extraídos de la literatura existente.

6. Agradecimientos

El autor agradece a Lucía Arango Cardona y Asociados por asignar el personal necesario para realizar este proyecto de investigación.

7. Referencias

- [1] Alvéstegui, C. C., "Diseño de Estructuras de Hormigón Reforzado", (3 ed.), Editorial USACH, 2015, pp 174
- [2] Chen C. C. and Hsu S. M., "Formulas for Curvature Ductility Design of Doubly Reinforced Concrete Beams", Journal of Mechanics, Vol 20 No. 4, December 2004, pp257-265
- [3] Chu-Kia Wang, Charles G. Salmon, José A. Pincheira and Gustavo J. Parra-Montesinos, "Reinforced Concrete Design", (8th ed.), Oxford University Press, New York, 2018
- [4] Ferguson P. M, "Reinforced Concrete Fundamentals", (2nd ed.), John Wiley & Sons, New York, 1965, pp 63
- [5] Molano Toro J. C., "Diseño Dúctil de Secciones Rectangulares de Hormigón Reforzado", X Jornadas Sudamericanas de Ingeniería Estructural, Porto Alegre, Brasil, 1993.

- [6] Molano Toro J. C., "Curvature Ductility of Reinforced Concrete Beams under Low and High Strain Rates", ACI Structural Journal, Vol 93(4), July-August 1996, pp 496-498.
- [7] Molano Toro J. C., "Coeficientes para el Cálculo de Vigas Rectangulares de Hormigón Doblemente Reforzadas según ACI 318-95", Colección Universidad de Medellín, No. 28, 1997, 66 páginas.
- [8] Molano Toro J. C., "Design of Reinforced Concrete Flexural Sections by Unified Design Approach", ACI Structural Journal, Vol 96(4), July-August 1999, pp 661.
- [9] Park R, and Paulay T., "Reinforced Concrete Structures", John Wiley & Sons, New York, 1975, pp 87.
- [10] Park R, and Ruitong D., "Ductility of Doubly Reinforced Concrete Beam Sections", ACI Structural Journal, Vol 85(2), March-Abril 1988, pp 217-225.
- [11] Wight J.K, "Reinforced Concrete. Mechanics and Design", (7th ed.), Pearson, England. 2016, pp 246.