

Tabla de contenido	
INTRODUCCIÓN	4
GLOSARIO	5
1- GENERALIDADES	8
Sistemas de alcantarillado	8
Sistemas de alcantarillado convencionales	8
Sistemas de tratamiento no convencionales	9
Otros elementos de alcantarillado	10
2- MARCO TEÓRICO	11
2.1. Diseño de redes y normas generales	11
2.1.1. Diámetro	11
2.1.2. Diseño hidraulico	11
2.1.3. Coeficientes de rugosidad	12
2.1.4. Regimen de flujo	14
2.1.5. Distribuicion general para colectores	14
2.1.6. Unión de colectores	16
2.1.7. Cambios de dirrecion de colectores	17
2.1.8. Perdidas de energia	17
2.1.8.1. Perdidas de energia por conexiones y pozos	de inspeccion 17
2.1.8.1.1.Régimen subcrítico:	17
2.1.8.1.2. Régimen supercrítico:	19
2.1.8.2. perdidas de energia para colectores curvos	20
2.1.9. Materiales	21
2.2. Alcantarillado sanitario	24
2.2.1. Parámetros de diseño	24
2.2.1.1. Contribución de aguas residuales	24
2.2.1.2. Caudal máximo horario	30
2.2.1.3. Factor de mayoración	30
2.2.1.4. Caudal de diseño	31
2.2.1.5. Diametro interno real minimo	31
2.2.1.6. Velocidad máxima y mínima	31
2.2.1.7. Pendiente mínima y máxima	32
2.2.1.8. Profundidad hidraulica máxima	32
2.2.1.9. Profundidad de instalacion de la tuberia.	33

2.3. Alcantarillado Pluvial	35
2.3.1. Parámetros de diseño	35
2.3.1.1. Áreas de drenaje	35
2.3.1.2. Caudal de diseño	35
2.3.1.3. Curvas de intensidad-duracion- frecuencia	36
2.3.1.4. Periodo de retorno de diseño	36
2.3.1.5. Intensidad de precipitación	38
2.3.1.6. Coeficiente de escorrentía	39
2.3.1.7. Tiempo de concretración	40
2.3.1.8. Díametro mínimo	42
2.3.1.9. Velocidad máxima y mínima	43
2.3.1.10. Pendiente máxima y mínima	43
2.3.1.11. Profundidad de flujo	43
2.4. Alcantarillado Combinado	45
2.4.1. Caudal de diseño	45
2.4.2. Parámetros de diseño	45
2.5. Estructuras complementarias	46
2.5.1. Conexión de colectores y pozos de inspección	46
2.5.2. Parámetros de diseño	46
2.5.2.1. Diámetro	46
2.5.2.2. Profundidad	47
2.5.2.3. Distancia entre pozos	47
2.5.3. Cámaras de caída	47
2.5.3.1. Parámetros de diseño	47
2.5.4. Sumideros	48
2.5.4.1. Parámetros de diseño	48
2.5.5. Alividaderos	48
2.5.5.1. Parámetros de diseño	48
2.5.6. Canales	49
2.5.7. Sifones invertidos	50
2.6. Estaciones de bombeo	51
2.6.1. Parámetros de diseño	51
2.6.2. Tipos de sistemas de bombeo	52
2.6.2.1. Bombas centrífugas	52
2.6.2.2. Bombas Helicoidales	54

2.6.2.3. Bombas eyectoras	55
3- FASE PRÁCTICA	56
Diseño de alcantarillado Sanitario	56
Empate por cota clave	74
Perfiles de los colectores:	75
Empate cota de energia ejercicio 1 a desarrollar	78
Desarrollo	79
Empate cota de energia ejercicio 2 a desarrollar	93
Desarrollo	94
ANEXOS	109
Anexo 1	109
Flujo subcrítico (NF < 0.9)	109
Calculo hidráulico de colectores flujo supercrítico	110
Anexo 2	112
Empate por línea de energía para flujo supercrítico	112
Anexo 3	117
Anexo 4	118
Anexo 5	119
Anexo 6	120
BIBLIOGRAFÍA	124

INTRODUCCIÓN

El ingeniero civil se forma de acuerdo a las competencias necesarias para planear, diseñar, coordinar y ejecutar soluciones frente a trabajos relacionados en estructuras, geotecnia, vías y transporte, obras hidráulicas, saneamiento ambiental con el fin de identificar problemáticas y generar soluciones que beneficien a la sociedad (*Presentación Ingeniería Civil*, n.d.).

El alcantarillado consiste en una serie de tuberías y obras complementarias para recibir, conducir y evacuar las aguas residuales producidas por las actividades humanas y por las lluvias. Se opta un sistema de alcantarillado para control de materia ambiental, para satisfacer las necesidades de las ciudades y con técnicas comunes como el diseño hidráulico, profundidades y especificaciones de construcción, entre otras (Sanitario, 2014).

La cartilla realizada es un guía de diseño y construcción de alcantarillados, como apoyo a los estudiantes de la carrera de ingeniería civil, donde encontraran información teórica de acuerdo a los libros guía más completos. Por otro lado, se encuentra la normativa usada para el diseño de sistemas de alcantarillados actualizada. Por ultimo encontramos una serie de ejercicios desarrollados en compañía del M Sc. William Ricardo Mozo Moreno, como guía para el desarrollo y compresión de cómo se calcula y diseña un sistema alcantarillado.

GLOSARIO

- Aguas lluvia: lluvias que proviene del precipitación o escorrentía pluvial (RAS, 2000).
- Aguas residuales: Proviene de las aguas desechadas de la zona residencial, institucional e industrial (RAS, 2000).
- Aguas residuales domésticas: Provienen de las actividades humanas de uso doméstico en zona residencial, edificios e instituciones (RAS, 2000).
- Aguas residuales industriales: Liquido de desecho que provienen de las actividades de fábricas e industrias (RAS, 2000).
- Aguas de infiltración: Provienen del subsuelo, que no es indeseable para el sistema de alcantarillado y así mismo lo penetra (RAS, 2000)
- Alcantarillado: Conjunto de conductos y estructuras que recolectan, conducen y ponen en disposición final las aguas residuales y de la precipitación pluvial (Pérez R., 2015).
- Alcantarillado combinado: Sistema que se construye para recolectar y conducir las aguas residuales y las aguas lluvias (RAS, 2000)
- Alcantarillado de aguas lluvia: Sistema que se construye para recolectar y conducir las aguas producto de la lluvia (RAS, 2000).
- Alcantarillado de aguas residuales: Sistema que se construye para recolectar y conducir las aguas producto residencial o industrial (RAS, 2000).
- Área tributaria: Superficie que define el drenaje hacia un punto o tramo (RAS, 2000).
- Cámara de caída: Da continuidad al flujo, utilizada cuando una tubería tiene una altura considerable con base a la tubería de salida(RAS, 2000).
- Canal: Su diseño es artificial, conduce el agua lluvia a un cauce natural (RAS, 2000).

- Coeficiente de escorrentía: Relación que existe entre la escorrentía y la cantidad de agua lluvia que cae en un área (RAS, 2000).
- Coeficiente de retorno: Relación entre el caudal medio de aguas de producto residual y caudal medio entre el consumo de población (RAS, 2000).
- Coeficiente de rugosidad: Depende del tipo de material es el efecto friccional que tiene las paredes de los conductos sobre el flujo (RAS, 2000)
- Colector principal: Tiene formas circular, semicircular, rectangular, entre otras, es cerrado, sin las conexiones domiciliarias y tiene en cuentas los caudales de tramos secundarios para evacuación (RAS, 2000).
- Conexión errada: es contribución de caudal de acuerdo a las agua lluvias en las redes sanitarias u otras.
- Consumo: Volumen de agua que reciben los usuarios en cierto periodo y es agua potable (RAS, 2000).
- Cota batea: Punto más bajo de la sección transversal interno de la tubería o colector (RAS, 2000).
- Cota clave: Punto más alto del nivel de la sección transversal externo de la tubería o colector (RAS, 2000).
- Diámetro: diámetro interno real de las tuberías o condcutos circulares (RAS, 2000).
- Escorrentía: Volumen de agua que escurre poco después de comenzada la lluvia (RAS, 2000).
- Frecuencia: Promedio que representa un evento determinada magnitud de lluvia, durante un lapso de tiempo definido (RAS, 2000).
- Hidrógrama: Grafica que presenta la variación de caudal con el tiempo, describe la respuesta hidrológica un área de drenaje y un evento de precipitación (RAS, 2000).
- Intensidad de precipitación: cantidad de agua que cae durante un tiempo en una superficie (RAS, 2000).
- Periodo de retorno: Número de años en promedio de un evento que ocurre de la misma forma o cumple una excedencia (RAS, 2000).
- Pozo o cámara de inspección: Estructura cilíndrica que permite el

- acceso para mantenimiento y la ventilación, tiene una tapa removible para mayor facilidad de acceso (RAS, 2000).
- Precipitación: Cantidad de agua lluvia que cae durante un tiempo (RAS, 2000).
- Sumidero: Estructura que se construye con el fin de tomar las aguas de escorrentía y corre por las cunetas, para entregarlas por pozos de inspección de los alcantarillados (RAS, 2000).
- Tiempo de concentración: Es el tiempo que recorre la escorrentía desde el punto más lejano hasta el punto de salida, suma del tiempo de entrada y su recorrido (RAS, 2000).
- Tramo: Es el colector que se encuentra entre dos estructuras de conexión (RAS, 2000).
- Tubo o tubería: Conducto de diversos materiales que es prefabricado o se construye en el sitio, por lo general es circular, cumple con normas técnicas (RAS, 2000).

1- GENERALIDADES

Todos los países o población, cuentan con un suministro de agua, con el también deben contar con una red de alcantarillado que permite la evacuación de agua residual.

Sistemas de alcantarillado

El sistema de alcantarillado se define como un conjunto de estructuras de tuberías y obras complementarias que reciben, evacuan, disponen aguas residuales producto de las actividades humanas o de la precipitación pluvial Cualla, (1995), Los tipos de aguas residuales son:

- Aguas residuales domésticas.
- Aguas residuales industriales.
- Aguas lluvia.

_

De acuerdo al tipo de agua que conduzca y su procedencia, se dividen en alcantarillado sanitario, pluvial y combinado Cualla, (1995).

Sistemas de alcantarillado convencionales

Los sistemas de tratamiento convencionales son aquellos considerados como los sistemas tradicionales y son usados para la recolección de aguas residuales o lluvias hasta un punto de disposición final. Los sistemas convencionales son:

- Alcantarillado sanitario: Sistema de recolección de aguas exclusivamente residuales domesticas o de industria Pérez,(2013). Su clasificación de los conductos es:
- ✓ Laterales o iniciales: Punto donde se reciben los desagües de los

- domicilios
- ✓ Secundarias: Recibe uno o más desagües de las tuberías iniciales.
- ✓ Colector secundario: Recibe el desagüe de dos o más tuberías secundarias
- ✓ Colector principal: Recoge el caudal de los colectores secundarios
- ✓ Emisario final: Conduce todo el caudal hasta el punto de entrega o salida, este puede ser una planta de tratamiento o vertimiento de agua.
- ✓ Interceptor: Es un colector lateral del vertimiento de agua o de un canal.
- Alcantarillado pluvial: Sistema de recolección y evacuación de aguas producidas por la lluvia o en tal caso de granizo o nieve. Su método de medición se registra en directo que es por medio de pluviógrafos que se hace de forma gráfica y por medio de un reloj o de forma directa o diaria que es por medio de pluviómetros que llevan una rejilla especial y recipientes calibrados. Con lo anterior se puede observar que es importante para el diseño y construcción de un alcantarillado pluvial las intensidades de lluvia, frecuencia y el tiempo de concentración (Cualla, 1995).
- Alcantarillado combinado: Conduce a la vez aguas residuales domesticas e industriales y las aguas lluvias. Las aguas industriales son de especial cuidado en este tipo de sistemas, suelen ser corrosivos y con altos niveles de pH, por eso se debe diseñar y construir conductos especiales y plantas de tratamiento (Cualla, 1995).

Sistemas de tratamiento no convencionales

Son sistemas de menor costo, basados en consideraciones de diseño adicionales y con mejor tecnología en su operación y mantenimiento, parten de un sistema in situ, cuando incrementa la densidad de población, se han propuesto de acuerdo a que los sistemas convencionales son muy costosos. Los alcantarillados no convencionales se denominan los alcantarillados simplificados, condominales y alcantarillados sin arrastre

de sólidos (RAS, 2000).

- Alcantarillados simplificados: Su funcionamiento es parecido al sistema de alcantarillado convencional sanitario, simplemente permite reducir el diámetro de los colectores, reducir la cantidad de pozos de inspección o sustituirlos por otras estructuras más económicas (Ras,2000).
- Alcantarillados condominales: Recoge aguas residuales de un conjunto de viviendas, suelen ser a un área inferior a 1 ha y lo hace por medio de colectores simplificados para al final transportar el agua a la red de alcantarillado o una planta de tratamiento (RAS, 2000).
- Alcantarillados con arrastre de solidos: Su sistema posee un tanque interceptor que retiene y degrada los sólidos, produce un efluente al sistema sin solidos donde se puede transportar por colectores de menor diámetro, es de uso doméstico o en pequeñas comunidades con menor costo (RAS, 2000).
- Sistema In situ: Sistemas basados en tanques, pozos sépticos, letrinas y entre otros, son de muy bajo costo y son transitorios de recolección y transporte, son apropiados para áreas de baja densidad de población (RAS, 2000).

Otros elementos de alcantarillado

Permiten el adecuado funcionamiento del sistema, entre otras cosas los cambios de dirección de colectores por los pozos de inspección o los cambios de pendiente por la cámara de caída.

- Pozos de Inspección
- Cámara de caída
- Aliviaderos frontales o laterales
- Sifones invertidos
- Sumideros y rejillas
- Conexión domiciliaria

2- MARCO TEÓRICO

2.1. Diseño de redes y normas generales

2.1.1. Diámetro

Para el cálculo hidráulico se hace referencia al diámetro interno real de los colectores.

2.1.2. Diseño hidraulico

El flujo en aguas residuales o pluviales tanto como en su recolección y evacuación no es permanente. Pero como los colectores se diseñan a flujo libre por gravedad su diseño hidráulico puede hacerse con un flujo uniforme. Sirve para colectores con diámetros pequeños. Según el reglamento técnico del sector de agua potable y saneamiento básico, RAS, (2000). Para flujo uniforme existen varias fórmulas que son apropiadas, donde se encuentran las de Chézy que constituye la ecuación de Darcy y Manning (n) que son las más utilizadas.

$$V = C * (R * S)^{1/2}$$
 (Chézy) (1)

$$V = \left(\frac{1}{n}\right) * R^{2/3} * S^{1/2}$$
 (Manning) (2)

Dónde:

V = Velocidad

C= Coeficiente de resistencia a flujo de Chézy

R= Radio hidráulico

S= Pendiente

N= Coeficiente de rugosidad de Manning

El diseño y utilización de las formulas depende del diseñador y se puede utilizar modelos de flujo que sean permanente o no.

También es importante tener en cuenta la expresión de Manning en caudal, recordando que la ecuación general de caudal es:

$$Q = A * V$$
 (General) (3)

$$Q = \frac{A}{\eta} * R^{\frac{2}{3}} * S^{1/2}$$
 (Manning) (4)

Dónde:

Q = Caudal

A =Área del conducto

V = Velocidad

n= Coeficiente de rugosidad de Manning

R= Radio hidráulico

S= Pendiente

En el anexo 1 se encuentra el cálculo hidráulico de acuerdo a las condiciones de flujo uniforme de acuerdo a la ecuación de Manning.

2.1.3. Coeficientes de rugosidad

El coeficiente de rugosidad depende de las pruebas de laboratorio y mediciones de campo, de acuerdo a los materiales y condiciones. Los experimentos de campo en estructuras ya existentes pueden reflejar resultados desconocidos, dependiendo de los errores en algunas mediciones.

El coeficiente de resistencia al flujo de Chézy (C), puede obtenerse del coeficiente de fricción (f) de la fórmula de Darcy-Weisbach, es la fórmula más completa y aplicable a todos los regímenes de flujo (RAS, 2000).

El coeficiente de rugosidad de Manning está estimado a partir de algunas mediciones de laboratorio, pero en general depende del tipo de material del conducto. Para el diseño de redes de recolección y evacuación debe ser seleccionado adecuadamente ya que las condiciones del efecto

friccional del servicio del colector, depende de varios factores:

- Material del conducto.
- Forma y tamaño del conducto.
- Tipo y número de uniones.
- Entrada de flujos laterales puntuales.
- Desalineamiento horizontal y vertical del conducto.

Para los niveles de complejidad de un sistema intermedio y alto, el coeficiente de rugosidad de Manning de pared lisa se define entre 0.009 y 0.013, la decisión la toma el diseñador y debe contar con la aprobación de la empresa, debe ser una sustentación técnica y económica de acuerdo al sistema de alcantarillado (RAS, 2000).

Para los niveles de complejidad medios y bajos, se establece de las tablas de acuerdo al material. Podemos guiarnos de lafigura 1 o en ver otra en anexos 1.

Figura 1.

Valores de coeficiente de Manning-aguas domésticas y aguas lluvia

Valores del coeficiente de rugosidad de Maning		
Material	n	
CONDUCTOS CERRADOS		
Asbesto – cemento	0.011 - 0.015	
Concreto prefabricado interior liso	0.011 - 0.015	
Concreto prefabricado interior rugoso	0.015 - 0.017	
Concreto fundido en sitio, formas lisas	0,012 - 0,015	
Concreto fundido en sitio, formas rugosas	0,015 - 0,017	
Gres vitrificado	0.011 - 0.015	
Hierro dúctil revestido interiormente con cemento	0.011 - 0.015	
PVC, polietileno y fibra de vidrio con interior liso	0.010 - 0.015	
Metal corrugado	0.022 - 0.026	
Colectores de ladrillo	0.013 - 0.017	
CONDUCTOS ABIERTOS		
Canal revestido en ladrillo	0.012 - 0.018	
Canal revestido en concreto	0.011 - 0.020	
Canal excavado	0.018 - 0.050	
Canal revestido rip-rap	0.020 - 0.035	

Nota: La figura representa los valores de rugosidad del coeficiente de Manning de acuerdo al material y al tipo de conducto. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.24), por RAS,(2000)

Para el diseño de la red de colectores es diferente de acuerdo al régimen de flujo deberá estar estable, ya sea subcrítico o supercrítico, por eso el número de Froude debe estar en el rango (Pérez R., 2015)

- F < 0.9 subcrítico
- F entre 0.9 y 1.1 critico
- F > 1.1 supercrítico

Y se calcula de la siguiente forma, de acuerdo a la ecuación del libro de diseño y construcción de alcantarillados Pérez R., (2015):

$$F = {V \over (gH)^{0.5}} = {0.319 V \over (H)^{0.5}}$$
 (Froude) (5)

Dónde:

V = Velocidad real en m/s

g = Constante gravitacional = 9.8 m/s2

H = Profundidad Hidráulica en m

2.1.4. Regimen de flujo

Es importante verificar el régimen del flujo para condiciones especiales en los primeros años de funcionamiento, se debe evitar el flujo crítico.

2.1.5. Distribuicion general para colectores

Nomenclatura

La red de colectores debe tener una clara y precisa nomenclatura en planos, memorias, convenciones e identificación y ubicación de la topografía de los colectores y demás elementos de conexión al sistema (RAS, 2000).

Pendientes

La pendiente de los colectores es importante de acuerdo a la topografía del

terreno. Si es baja, se verifica los esfuerzos cortantes, mientras que si es pronunciada se debe colocar más estructuras de caída, con el fin de que sean tramos cortos y puedan tener una pendiente adecuada (RAS, 2000).

• Cambios fuertes de pendiente

En el momento de tener un aumento de pendiente importante, puede reducirse el diámetro interior del colector de salida, siempre y cuando este sea mayor o igual a 600 mm y las condiciones de las estructuras, aportes lo permitan (RAS, 2000).

Ubicación

Los colectores deben localizarse de acuerdo a la topografía o costo de construcción y siguiendo el alineamiento de las calles. Los colectores de aguas residuales o lluvias no pueden estar ubicados en la misma zona de la tuberías de acueducto, por lo general, se localizan por debajo de la cota batea. El colector de aguas lluvia debe localizarse cerca al eje de la vía, mientras que el de residuales debe estar a un costado (RAS, 2000).

De acuerdo a la resolución 0330 artículo 138 RAS, (2017), se puede complementar la localización de las redes de alcantarillado:

- O Para alcantarillado sanitario debe ubicarse a los costados del eje, aproximadamente a un cuarto del ancho de la calzada, para alcantarillado pluvial y combinado cerca al eje de la calzada.
- o La tubería de alcantarillado debe estar ubicado a una distancia mínima de 0.5 m de la acera y a 1.5 del paramento.
- Si existen vías con separador central, se diseña una red para cada calzada cumpliendo que el pluvial es cerca al centro de la vía y el sanitario al costado.
- Las distancias mínimas libres de colectores la red de agua residuales y lluvias, frente a otras tuberías de servicios públicos debe ser de 1.0 m en dirección horizontal y de 0.3 m en dirección vertical
- Para los cruces subterráneos de cauces naturales se debe hacer un estudio para el caudal máximo anual, teniendo en cuenta la tabla 1

del periodo de retorno de acuerdo a la longitud del cauce.

Tabla 1

Periodos de retorno para estudios de cota de agua máximas para cruces de agua

Longitud del cruce (L)	Periodo de retorno (años)
L < 10 m	25
10 m ≤ L ≤ 50 m	50
L > 50 m	100

Nota: La tabla muestra los periodos de retorno de acuerdo a la longitud del cruce de agua. Tomada de: de Reglamento Técnico del sector de agua potable y saneamiento básico p 88.Por (RAS, 2017).

2.1.6. Unión de colectores

Se realiza por medio de pozos de inspección o estructuras de unión, depende del régimen del flujo de entrada y el flujo de salida, se basa fundamentalmente en la determinación de pérdidas de cabeza hidráulica producidas por la unión.

La conexión de colectores debe cumplir con una distancia máxima que se nombra en las normas urbanas, contando con los dispositivos de limpieza y de comportamiento hidráulico del flujo. La distancia máxima es de 100 a 200 m si la limpieza de los colectores es manual, si es mecánica o hidráulica cuando puede llegar casi a los 200 m (RAS, 2000).

2.1.7. Cambios de dirreción de colectores

Para realizar los cambios de dirección en la red se hace por medio de pozos de inspección, cámaras o demás estructuras. Existen colectores matrices o emisarios finales que permiten realizar el cambio con el mismo colector por medio de curvas. El diámetro mínimo y radios de curvatura son definidos por la exigencia del mantenimiento e inspección (RAS, 2000).

2.1.8. Perdidas de energia

Las pérdidas de energía en el sistema dependen de las conexiones, estructuras, materiales y formas en los que se construya la red de alcantarillados.

2.1.8.1. Perdidas de energia por conexiones y pozos de inspeccion

La unión de colectores se hace con estructuras hidráulicas diseñadas apropiadamente, para su diseño se determinan perdidas de cabeza en la estructura. El análisis es diferente para el régimen de flujo y depende de si es un colector de entrada como salida (RAS, 2000).

2.1.8.1.1.Régimen subcrítico:

Para las pérdidas de energía el empate de energía para flujo subcrítico es fundamental para analizar el comportamiento hidráulico. Consiste en igualar la cota de energía del colector principal entrante al pozo con la cota saliente, al realizar el empate de tuberías se presentan ciertas perdidas de energía por cambio de dirección y transición. En el anexo 1 se explica mejor el proceso de empate por línea de energía del flujo subcrítico.

Perdida de energía por cambio de dirección

Se calcula de acuerdo a la relación entre el radio de curvatura del pozo (rc) y el diámetro del colector (De). En la tabla 3 podemos encontrar algunas relaciones pre establecidas de la perdida de energía por el cambio de dirección. Puede ser para régimen subcrítico o supercrítico.

Tabla 2Perdidas de energía por cambio de dirección. Para ángulos de deflexión de 90°

Régimen	rc/Dc	ΔHC o K_C
Subcrítico	>3.0	$0.05 V_1 2/2g$
	1.5 - 3.0	$0.20 V_1 2/2g$
	1.0 - 1.5	$0.40 V_1 2/2g$

Nota: La tabla representa los valores de pérdidas de energía de acuerdo a la relación rc/Dc para régimen subcrítico Tomado de Elementos de diseño de acueductos y alcantarillados p. 285 por (Cualla, 1995).

"Nota: no se recomienda trabajar con relaciones de " r_c/D_s menores que 1,0 debido a que el porcentaje de pérdida de la energía cinética es muy alto. En este caso hay que aumentar el diámetro del pozo o hacer un cambio de dirección menor de 90°".

Perdida de energía por la transición

Dependen del aumento o la disminución de la velocidad debido al cambio de diámetro, pendiente o adición de caudal. Cualla, (1995), propone la siguientes ecuación para régimen subcrítico.

$$\Delta H_C = K * \left(\frac{V_2^2}{2g} - \frac{V_1^2}{2g}\right)$$
 (ecuación régimen subcríto) (6)

Dónde:

K = Coeficiente de perdida de energía (adimensional)

V = Velocidad de entrada y salida (m/s)

 $g = gravedad (m/s^2)$

Para calcular el empate por línea de energía, se puede calcular de

acuerdo a la ecuación de Cualla, (1995) para flujo subcrítico es:

$$\Delta HP = \Delta HC + \Delta HE$$
 (Ecuación de empate) (7)

Dónde:

 ΔHC = perdida de energía por el cambio de dirección.

 ΔHE = Perdida de energía por transición.

k = 0.1 para un aumento de velocidad

k = 0.2 para una disminución de la velocidad

"Nota: cuando existan varias tuberías afluentes (entrantes), se debe verificar que todas las cotas de energía entrantes, después de descontadas las pérdidas de energía correspondientes, sean superiores o iguales a la de la tubería efluente (saliente)."

"Nota: al empatar con la tubería principal entrante, los demás tramos pueden diseñarse nuevamente de tal manera que coincidan con la misma línea de energía de la principal entrante (después de descontadas las pérdidas) en el pozo.

2.1.8.1.2. Régimen supercrítico:

En el caso de régimen supercrítico, se establece en dos situaciones: la unión de colectores sin estructura de unión en la caída, es cuando la cota del colector afluente a la estructura es casi similar y la cota de energía de salida es menor que la entrada que evita resaltos hidráulicos. Las pérdidas de energía se pueden calculas de acuerdo a la tabla 4 que representa valores de K_C o ΔHC , que es el coeficiente de pérdidas de energía para flujo curvilíneo, para su diseño se tiene en cuentas los máximos ángulos de deflexión que siguen una relación inversa con el diámetro del colector de salida.

Para los casos donde no se construya estructuras de unión o no se cuente con el espacio para esta obra, se realizan estructuras convencionales como pozos o cámaras de caída. El diseño busca que la profundidad sobrepase las elevaciones del flujo afluente, en el anexo 2 se amplían las consideraciones para empates y conexión de colectores

(RAS, 2000).

Tabla 3. Valores del coeficiente Kc

Régimen	rc/Dc	ΔHC o K_C
Supercrítico	>10.0	0.05
	8.0 - 10.0	0.20
	6.0 - 8.0	0.40

Nota: La tabla representa los valores de pérdidas de energía de acuerdo a la relación rc/Dc para régimen supercrítico Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.28), por RAS, (2000)

En anexo 2 se explica otra forma o método de como hallar perdidas de energía por empates para flujo supercrítico de acuerdo a otras literaturas.

2.1.8.2. perdidas de energia para colectores curvos

Las pérdidas de energía adicionales en los colectores curvos se deben a un efecto de fricción y la pendiente que se genera. Esta pérdida de energía se establece con la misma ecuación (6), la tabla 2y 3muestra el valor de K_C o ΔHC , de acuerdo al régimen de flujo.

• Empates de energía

Como se indicó anteriormente para la unión entre colectores se hace por medio de un pozo de inspección, Para el empate de cotas se define de acuerdo a:

• Empate por cota clave: colectores cuyo diámetro sea menor a 36 pulgadas y el flujo sea subcrítico.

Este método consiste en igualar cotas claves de las tuberías de entrada y salida; por lo tanto la caída del pozo es la diferencia entre los diámetros de los colectores, para la perdida de energía producida en el pozo por el cambio de sección, se puede obtener una caída (ΔH_C) de acuerdo al diámetro del colector de

salida (Cualla, 1995).

Para:

$$D_{SALIDA} < 24$$
"

$$\Delta H_C = \frac{1}{2} (D_{SALIDA} - D_{ENTRADA})$$
 (8)

$$24'' < D_{SALIDA} < 36''$$

$$\Delta H_C = \frac{3}{4} (D_{SALIDA} - D_{ENTRADA})$$
 (9)

- Empate por cota batea
- Empate por el 80 % de los diámetros
- Empate por línea de energía: para flujo subcrítico y flujo supercrítico.

Para tener en cuenta:

Los métodos anteriormente mencionados, los más utilizados es empate por cota clave y empate por línea de energía depende de la norma a implementar en los proyectos y del régimen del flujo.

2.1.9. Materiales

Los materiales para el diseño del sistema de la red de alcantarillados debe ser un criterio apropiado ya que las aguas residuales poseen características especiales y cargas externas actuantes, con condiciones de suelos especiales y demás condiciones. Se debe tener en cuenta para estructuras de conexión, unión de colectores, colectores y otros componentes.

Existen diversos materiales para la construcción de estructuras de alcantarillado, pero todas ellas deben cumplir con las especificaciones técnicas que se presentan para aguas residuales. La Figura 2 presenta información a las normas ICONTEC e internacionales de acuerdo al tipo de tubería, es una guía para encontrar las especificaciones precisas.

En el Anexo 3 tabla 5.1 presenta normas técnicas de materiales y mezclas de concreto, tabla 5.2 normas técnicas de aceros de refuerzo (RAS, 2000).

Figura 2. *Normas Técnicas de tuberías*

Tipo de tubería	Norma ICONTEC	Norma Internacional
Concreto reforzado	NTC 401	ANSI/ASTM C 76
	NTC 1328	ANSI/ASTM C 361
	NTC 3789	ANSI/ASTM C 443
		ANSI/ASTM C 506
		ANSI/ASTM C 507
		ANSI/ASTM C 655
		ANSI/ASTM C 877
Concreto simple	NTC 1022	ANSI/ASTM C 14
	NTC 1328	
Asbesto – Cemento	NTC 44	ASTM C 428
	NTC 239	ASTM C 644C
	NTC 268	ISO R 881
	NTC 384	
	NTC 487	
Arcilla vitrificada (gres)	NTC 511	ASTM C 12
	NTC 3526	ANSI/ASTM C 700
	NTC 4089	ASTM C 425
		ANSI/ASTM C 301

Tipo de tubería	Norma ICONTEC	Norma Internacional
Hierro fundido	NTC 3359	ASTM A 74-72
		ANSI A 21.6 (AWWA C 106)
		ASTM C 644
Fibra de vidrio (resina	NTC 3870	ASTM D 3262
termoestable reforzada)		ASTM D 3681
Hierro dúctil	NTC 2346	ISO 2531
	NTC 2587	ISO 4633
	NTC 2629	ISO 5208
	NTC 3359	ISO 5210
		ISO 5752 serie 14
		ISO 5752
		ISO 7005-2
		ISO 7259
		ANSI A 21.4 (AWWA C 104)
		ANSI A 21.5 (AWWA C 105)
		ANSI/AWWA C 110
		ANSI A 21.5 (AWWA C 115)
		ASTM A 746
Acero	NTC 2091	ASTM A 475
710010	1110 2001	ASTM A 760
		ASTM A 762
		AASHTO M-36
		AASHTO M-245
Polietileno	NTC 1747	ASTM D 2239
	NTC 3409	ASTM D 3035
	NTC 3410	ASTM D 3261
	NTC 3664	
	NTC 3694	
Polietileno de alta densidad		ASTM D 1248
		ASTM D 2412
		ASTM D 3035
		ASTM F 714
		ASTM F 894
Polibutileno		ASTM F 809
		ASTM D 2581
Policloruro de vinilo (PVC)	NTC 1087	ANSI/ASTM D 2564
	NTC 1341	ANSI/ASTM D 2680
	NTC 1748	ANSI/ASTM D 3033
	NTC 2534	ANSI/ASTM D 3034
	NTC 2697	ANSI/ASTM D 3212
	NTC 3640	ANSI/ASTM F 477
	NTC 3721	ASTM F 545
	NTC 3722	ASTM F 679
	NTC 4764 (PARTES 1 y2)	ASTM F 949
Fibra de vidrio (Resina	NTC 2836	ASTM D 2996
termoestable reforzada, RTR)		ANSI/ASTM D 2997
		ASTM D 2310
		ASTM D 3262
		ASTM D 3754
Mortero plástico reforzado (RPM)		ANSI/ASTM D 3262
		ASTM D 3754

Nota: La figura representa las normas técnicas de tuberías de acuerdo al tipo y material de la tubería Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.29- D.30), por RAS, (2000).

2.2. Alcantarillado sanitario

El alcantarillado sanitario se diseña para recibir, evacuar y conducir aguas domesticas conocidas como "aguas negras", producto de establecimientos comerciales e industriales. Es recomendable construir alcantarillados en lugares con pendiente para ayudar con la velocidad de arrastre para algunos solidos de suspensión (Cualla, 1995).

El caudal de las aguas residuales está compuesto por los siguientes aportes:

- Aguas residuales domesticas
- Aguas residuales industriales comerciales e institucionales
- Aguas de infiltración
- Conexiones erradas

2.2.1. Parámetros de diseño

Los parámetros de diseños tienen en cuenta las siguientes consideraciones:

2.2.1.1. Contribución de aguas residuales

La contribución de un sistema de aguas residuales que permite su recolección y evacuación, para calcular los aportes que presenta se debe tener en cuenta la población presente y futura del proyecto, basados en los censos, planes de ordenamiento territorial.

• Aguas residuales domesticas

Los aportes en las aguas residuales domesticas se considera con la determinación Q_D , RAS, (2000), propone las siguientes ecuaciones para el cálculo de las aguas residuales domésticas.

$$Q_D = \frac{C*D*A_{rb}*R}{86400} \quad (10)$$

$$Q_D = \frac{C*P*R}{86400} \quad (11)$$

Dónde:

C = Consumo diario por habitante L/hab*d

D = Densidad de población

 $A_{rb} =$ Área residencial bruta

R = Coeficiente de retorno

P = Población servida

Para estimar el valor del consumo medio diario por habitante (C), depende del nivel de complejidad del sistema y corresponde a la cantidad de agua que recibe un habitante para satisfacer sus necesidades diarias. Para estimar valores de densidad de población (D), se diseña de acuerdo a una población actual y futura que permita establecer el comportamiento hidráulico de estas aguas. Para estimación población servida (P), se establece como el producto entre la densidad de población y el área residencial bruta (D* A_{rb}), también se puede estimar de acuerdo al número de viviendas, el área de drenaje y el promedio de habitantes de cada vivienda. Para estimación del coeficiente de retorno (R), su valor proviene de datos de campo o información existente, en la tabla 4 se muestra una estimación de acuerdo al nivel de complejidad del sistema, en otros casos puede ser definido por la empresa y justificado apropiadamente (RAS, 2000).

 Tabla 4.

 Coeficiente de retorno de aguas domesticas

Nivel de complejidad del sistema	Coeficiente de retorno
Bajo y medio	0.7 - 0.8
Medio alto y alto	0.8 - 0.85

Nota: La tabla representa los valores del coeficiente de retorno de acuerdo al nivel de

complejidad del sistema para aguas domésticas. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.34), por RAS,(2000)

Aguas residuales industriales

Para el cálculo de los aportes de las aguas residuales industriales (Q_I) , varian de acuerdo al tamaño de la industria y de acuerdo a los procesos de tratamiento. De acuerdo a esto, las aguas residuales de uso industrial deben ser calculadas en cada paso en particular, dependiendo de censos, encuestas, entre otro. Se debe hacer un análisis de acuerdo a los residuos, vertimientos en aguas, hacer consideraciones de velocidad mínima para evitar obstrucciones de desechos, esto depende del nivel de complejidad del sistema y podemos tener una estimación de la contribución industrial de acuerdo a la tabla 5 (RAS, 2000).

Tabla 5.

Contribución industrial

Nivel de complejidad el	Contribución industrial (L/s*ha
sistema	ind)
Bajo	0.4
Medio	0.6
Medio alto	0.8
Alto	1.0 - 1.5

Nota: La tabla representa los valores de contribución industrial de acuerdo al nivel de complejidad del sistema, esta estimación de $Q_{\rm I}$ debe estimarse de acuerdo a las condiciones iniciales y finales. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.35), por RAS,(2000).

Aguas residuales comerciales

Para la estimación de la contribución de aguas residuales comerciales (Q_C) , depende de un estudio detallado, incluye consumo diarios por persona, densidades de población en estas áreas y coeficientes de retorno que son mayores al uso doméstico. En la tabla 6 podemos encontrar un estimación de la contribución (RAS, 2000).

Tabla 6.Contribución comercial

Nivel de complejidad del	Contribución comercial
sistema	(L/s*ha com)
Cualquier	0.4 - 0.5

Nota: La tabla representa el rango para estimación del valor de la contribución comercial Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.35), por RAS,(2000),

Aguas residuales institucionales

Para estimar valores de contribución de aguas residuales institucionales (Q_{IN}) , varían de acuerdo al tipo y tamaño, estas pueden ser colegios, hospitales, universidades, escuelas, hoteles, entre otras. Con la tabla 7 podemos estimar un valor de contribución sin importar el nivel de complejidad del sistema (RAS, 2000).

Tabla 7.Contribución institucional mínima en zona residencial

Nivel de complejidad del	Contribución institucional
sistema	(L/s*ha Inst)
Cualquier	0.4 - 0.5

Nota: La tabla representa el rango para estimación del valor de la contribución institucional en zona residencial. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.35), por RAS,(2000).

Caudal medio diario de aguas residuales

El caudal medio diario de aguas residuales (Q_{MD}), para un colector es la suma de todos los aportes domésticos y no domésticos. La ecuación según RAS, (2000), es la siguiente:

$$O_{MD} = O_D + O_I + O_C + O_{IN}$$
 (12)

El caudal medio diario debe ser estimado en condiciones iniciales Q_{MDi} y finales Q_{MDf} , en algunos casos donde los aportes de las aguas

residuales no domesticas sean menores o no tan importantes con respecto a las domesticas, se estima como porcentaje doméstico (RAS, 2000).

Conexiones erradas

El aporte de las conexiones erradas (Q_{CE}), provienen de bajantes de tejados o patios, se da como aportes desde que exista un sistema de recolección y evacuación de aguas lluvia y son considerados como máximos a la red sanitaria, dependiendo el nivel de complejidad del sistema, se puede desarrollar separado o combinado si es de medio alto a alto nivel, si es medio y bajo se toma una medida de control para reducir el aporte de conexiones erradas y si es de complejidad bajo se puede estimar un valor de 5 L/ hab*dia. Las tablas 8 y 9 son aportes máximos establecidos de acuerdo al sistema (RAS, 2000).

 Tabla 8.

 Aportes máximos por conexiones erradas con sistema pluvial

Nivel de complejidad del sistema	Aporte (L/s*ha)
Bajo y medio	0.2
Medio y alto	0.1

Nota: La tabla representa el aporte máximos por conexiones erradas con sistema pluvial de acuerdo al nivel de complejidad del sistema. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.36), por RAS,(2000).

Tabla 9.Aportes máximos por drenaje domiciliario de aguas lluvias sin sistema pluvial

Nivel de complejidad del sistema	Aporte (L/s*ha)
Bajo y medio	2
Medio y alto*	2

Nota: La tabla representa el aporte máximos por drenaje domiciliario sin sistema pluvial de acuerdo al nivel de complejidad del sistema. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.36), por RAS,(2000).

De acuerdo a la resolución 0330 RAS,(2017). Debe estimarse a partir

^{*}debe disponerse de sistema pluvial o combinado

de la información existente en la localidad, por ausencia de este dato se debe utilizar un valor máximo de 0.2 L/s.ha.

Aguas de infiltración

Los aportes de las aguas de infiltración (Q_{CE}), es fundamental tenerlo en cuenta ya que estas son inevitables de acuerdo a los aportes al alcantarillado sanitario, por medio de fisuras de colectores, juntas mal ejecutadas, ciertas uniones con pozos de inspección o por el nivel freático. De acuerdo a las características topográficas, precipitación y niveles freáticos dependen de ubicación del proyecto, para su caracterización en la tabla 10 se presentan aportes de infiltración de acuerdo al nivel de complejidad del sistema. En ciertos niveles de complejidad puede ser definido el aporte de infiltración por la empresa o por el diseñador (RAS, 2000).

Tabla 10.Aportes de infiltración en redes de sistemas de recolección y evacuación de aguas residuales.

Nivel de complejidad del sistema	Infiltración alta (L/s*ha)	Infiltración media (L/s*ha)	Infiltración baja (L/s*ha)
Bajo y medio	0.15 - 0.4	0.1 - 0.3	0.05 - 0.2
Medio alto y alto*	0.15 - 0.4	0.1 - 0.3	0.05 - 0.2

Nota: La tabla representa el aporte de infiltración de acuerdo al grado de complejidad del sistema y del grado de infiltración. *De acuerdo a estos niveles de complejidad puede ser definido por la empresa que presta el servicio. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.37), por RAS,(2000).

La resolución 0330 RAS, (2017), El caudal de infiltración se debe estimar de acuerdo a las características de aforos del sistema, topografía de la zona y su drenaje, cantidad y distribución de la precipitación, variación del nivel freático a las cotas claves de las tuberías, dimensiones, tipo y estado de las tuberías, uniones, juntas y demás estructuras. A falta de información se debe utilizar un factor entre 0.1 y 0.3 L/s.ha. De acuerdo a las características anteriormente mencionadas.

2.2.1.2. Caudal máximo horario

El caudal máximo horario está definido por RAS,(2000), como el caudal final medio diario con producto de un factor de mayoración, es importante ya que permite el desarrollo para establecer un caudal de diseño para el diseño de un colector de aguas residuales

$$Q_{MH} = F * Q_{MDF}$$
 (13)

De acuerdo a la resolución 0330 RAS, (2017), El factor de mayoración se debe tener de mediciones de campo, teniendo en cuenta patrones de consumo de la población. Por ausencia de estos datos tomar ecuaciones aproximadas, este valor debe estar entre 1.4 y 3.8.

2.2.1.3. Factor de mayoración

Para el factor de mayoración se tiene en cuenta las variaciones del consumo de agua por parte de los habitantes, en algunos casos es estimada por mediciones de campo, no es muy práctico, por eso surgen varias relaciones aproximadas para hallarlo como Harmon y Babbit que son válidas para poblaciones de 1.000 a 1'000.000 de habitantes y flores la cual estima en función del número de habitantes, con las siguientes ecuaciones según RAS, (2000).

$$F = 1 + \frac{14}{(4+P^{0.5})}$$
 Harmon (14)
 $F = \frac{5}{(P^{0.2})}$ Babbit (15)
 $F = \frac{3.5}{(P^{0.1})}$ Flores (16)

También puede estar dado en términos de caudal medio diario como las siguientes ecuaciones (RAS, 2000).

$$F = \frac{3.53}{Q_{MD}^{0.0914}} \text{ Los Ángeles (17)}$$

$$F = \frac{3.70}{Q_{MD}^{0.0733}}$$
 Tchobanoglous (18)

La fórmula de los Ángeles cumple para rangos de 2.8 a 28300 L/s y Tchobanoglous para 4 a 5000 L/s. Por otro lado el valor de F para cualquier expresión debe ser mayor o igual a 1.4 (RAS, 2000).

2.2.1.4. Caudal de diseño

El caudal de diseño se obtiene sumando todos los aportes de infiltración, conexiones erradas y caudal máximo horario, con la siguiente ecuación (RAS, 2000).

$$Q_{DT} = Q_{MH} + Q_{INF} + Q_{CE}$$
 (19)

De acuerdo a la resolución 0330 RAS, (2017), Se obtiene sumando el caudal máximo horario, los aportes por infiltraciones y conexiones erradas, si el caudal calculado es menor que 1.5 L/s, debe adoptarse este último valor como caudal de diseño para el tramo.

2.2.1.5. Diametro interno real minimo

El diámetro interno real mínimo permitido es de 170 mm. Para poblaciones menores de 2500 habitantes es permito como mínimo de 140 mm (RAS, 2017).

El diámetro interno real mínimo para tipo de alcantarillado sanitario es de 200 mm o para evacuar aguas residuales de 10 viviendas, con el fin de evitar posibles taponamientos en los conductos (RAS, 2000).

2.2.1.6. Velocidad máxima y mínima

Los colectores se diseñan a velocidad por gravedad y dependen del

material. Los valores adoptados se justifican a las características de los materiales, del agua residual, turbulencia y la unión de los colectores. La velocidad máxima real no debe sobre pasar los 5 m/s (RAS, 2000). La velocidad máxima real en un colector por gravedad no debe ser mayor de 5,0 m/s, para el caudal de diseño (RAS, 2017).

Las velocidad mínima real permitida en el colector es de 0.45 m/s, debe disponer una velocidad suficiente para lavar solidos depositados durante periodos de caudal bajo. Para condiciones iniciales se pide verificar el procedimiento de autolimpieza, para ello es necesario el esfuerzo cortante medio sea mayor que $1.5 N/m^2 (0.15 \ Kg/m^2)$ RAS, (2000) para el caudal inicial máximo horario, el caudal puede estimarse como:

$$Q_{MHi} = \frac{F * Q_{DI}}{K_1} + Q_{Ii} + Q_{Ci} + Q_{INi} + Q_{INF} + Q_{CEi}$$
(20)

Si al calcular Q_{MHi} es menor que 1.5 L/s, debe adoptarse este valor. El esfuerzo cortante medio está dado por la expresión (RAS, 2000).

$$\tau = \gamma * R * S (21)$$

En aquellos casos donde las condiciones topográficas presentes, no sea posible alcanzar la velocidad mínima, debe verificarse que el esfuerzo cortante sea mayor que $1.2N/m^2(0.12 Kg/m^2)$ (RAS, 2000).

2.2.1.7. Pendiente mínima y máxima

La pendiente mínima tiene en cuenta condiciones de autolimpieza y el control de gases. En tal caso la máxima es aquella que tiene una velocidad máxima real, mencionada en el anterior numeral.

De acuerdo a la resolución 0330 RAS,(2017), Velocidad mínima real permitida en el colector para que genere un esfuerzo cortante en la pared de la tubería es de 1,0 Pa.

2.2.1.8. Profundidad hidraulica máxima

Para permitir la relación de profundidad, se debe tener en cuenta la

aireación del flujo, para el caudal del diseño de un colector debe estar entre el 70 y 85% del diámetro de esté (RAS, 2000).

Relación máxima entre profundidad de flujo y diámetro de la tubería, el valor máximo permito para profundidad del flujo para el caudal de diseño en un colector es de 85% del diámetro interno real, para que permita la aireación adecuada (RAS, 2017).

2.2.1.9. Profundidad de instalación de la tuberia.

Profundidad mínima

La profundidad debe ser la adecuada para permitir el debido proceso de evacuación de las aguas, aceptando una pendiente mínima de 2% y evitando que el recubrimiento del colector lo rompa de acuerdo a la tabla 13 se puede evidenciar valores de profundidad mínimos (RAS, 2000).

De acuerdo a la resolución 0330 RAS, (2017), la profundidad de instalación de los colectores debe estar sustentada por estudios geotécnicos y de estabilidad, teniendo en cuenta las condiciones mecánicas y estructurales de la tubería, las uniones y el suelo. Los valores mínimos permisibles de recubrimiento de los colectores que no requieren protección a cargas vivas, con relación a la rasante definitiva, se definen en la tabla 11.

Únicamente por cruces, puntos de descarga o depresiones del terreno que generen profundidades menores a las estipuladas, deberán presentarse las protecciones a la tubería de acuerdo con los requerimientos de cada fabricante. En todos los casos se debe garantizar la entrega de las conexiones domiciliarias por gravedad sin sótano. Los colectores de aguas lluvias deben localizarse a una profundidad que no interfiera con las conexiones domiciliarias de aguas residuales, y que permita la adecuada conexión de los sumideros (RAS, 2017).

Tabla 11. *Profundidad mínima de colectores*

Servidumbre	Profundidad a la cota clave del	
X7/ 1 1	colector en (m)	
Vías peatonales o zonas verdes	0.75	
Vías vehiculares	1.20	

Nota: La tabla indica la profundidad mínima a la clave el colector, teniendo en cuenta el lugar donde se presente el colector. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.41), por RAS, (2000).

• Profundidad máxima

La profundidad máxima es de 5 m, puede aumentar su profundidad de acuerdo algunos requerimientos de la cimentación, materiales y otros aspectos que son fundamentales durante y después de la construcción (RAS, 2000).

2.3. Alcantarillado Pluvial

El alcantarillado pluvial se diseña y construye para recibir, conducir y disponer aguas que son productor de las precipitaciones, en otros casos pueden ser granizo o de nieve. Se puede tener un registro continuo que puede ser diaria, mensual y anual en milímetros por medio de fluviógrafos o de pluviómetros.

Para el diseño de colectores y canales los caudales se deben realizar mediante modelos lluvia- escorrentía, se puede utilizar el método racional siempre que el área de drenaje sea menor de 80 ha. Para su estimación se debe tener en cuenta el periodo de retorno, intensidad de lluvia, tipo de cobertura y tiempo de concentración.

2.3.1. Parámetros de diseño

2.3.1.1. Áreas de drenaje

Las áreas de drenaje son aquellas áreas aferentes y se determina para cada tramo, ya que con ella podemos saber el aporte de aguas lluvias para el diseño apropiado de cada tramo.

2.3.1.2. Caudal de diseño

Para el caudal de diseño podemos usar el método racional, se necesita el caudal pico de la precipitación, con base a la intensidad de duración del área del drenaje y coeficiente de escorrentía. El método racional se definido con la siguiente ecuación

$$Q = 0.278 * C * I * A (22)$$

Dónde:

C = coeficiente de escorrentía

I = Intensidad de lluvia

A =Área de drenaje

El método racional es relativamente usado para áreas pequeñas mínimas de 700 ha, si se presenta un área más grande, se puede utilizar otros modelos de lluvia por medio de hietogramas o hidrogramas que tengan en cuenta la capacidad de amortiguamiento en la red de colectores (RAS, 2000).

2.3.1.3. Curvas de intensidad-duración-frecuencia

Estas curvas son conocidas como las curvas IDF, son importantes para evaluar el caudal de diseño. Muchas de ellas existen en ciertas localidades, es importante analizar la validez y confiabilidad para el proyecto a realizar. La información de las curvas IDF provienen de estaciones pluviográfica ubicadas en la localidad, define eventos de intensidad de lluvia con periodos de retornos específicos (RAS, 2000). También está el nivel de complejidad del sistema como se muestra en la tabla 12.

Tabla 12.Curvas IDF

Nivel de complejidad del	Obtención mínima de curvas
sistema	IDF
Bajo y medio	Sintéticas
Medio alto	Información pluviográfica
	regional
Alto	Información pluviográfica local

Nota: La tabla indica de donde obtener la información minima de las curvas IDF, de acuerdo, al nivel de complejidad del sistema. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.36), por RAS,(2000).

2.3.1.4. Periodo de retorno de diseño

El periodo de retorno se selecciona de acuerdo a la importancia de las áreas, daños o algunas molestias que las inundaciones pueden ocasionar, al tráfico, habitantes, comercio, industria e infraestructura. Es

un factor de protección, por lo tanto debe estar justificado, algunas tablas establecen periodos de retorno. La tabla 15 muestra algunas características de drenaje y periodos de retorno RAS, (2000) en el anexo 4 se cita otra tabla de acuerdo a la resolución 0330 del 2017.

Tabla 13. *Periodos de retorno o grado de protección*

Características del área de drenaje	Mínimo (años)	Aceptable (años)	Recomendado (años)
Tramos iniciales en zonas residenciales con áreas tributarias menores a 2 ha	2	2	3
Tramos iniciales en zonas comerciales o industriales, con áreas tributarias menores a 2 ha	2	3	5
Tramos de alcantarillado con áreas tributarias mayores de 2 y 10 ha	2	3	5
Tramos de alcantarillado con áreas tributarias mayores a 10 ha	5	5	10
Canales abiertos en zonas planas y que drenan áreas mayores de 1000 ha	10	25	25
Canales abiertos en zonas montañosas (alta velocidad) o a media ladera, que drenan áreas mayores a 1000 ha	25	25	50

Nota: La tabla indica el periodo de retorno o grado de protección mínima y recomendada de acuerdo a las características del área donde este el drenaje. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.45), por RAS,(2000).

También se puede presentar un grado de protección de acuerdo a las autoridades locales y depende del nivel de complejidad del sistema, en

este caso el que ponga en peligro las vidas humanas, se puede incrementar el grado de proyección como se muestra en la tabla 14.

Tabla 14. Grado de protección según la complejidad del sistema

Nivel de complejidad del	Grado de protección igual o
sistema	mayor al
Bajo	Mínimo
Medio	Mínimo
Medio alto	Aceptable
Alto	Recomendado

Nota: La tabla indica el grado de protección igual o mayor, recomendada de acuerdo al nivel de complejidad del sistema. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.45), por RAS, (2000).

2.3.1.5. Intensidad de precipitación

La intensidad dada por las curvas IDF, se usa de acuerdo a la estimación del caudal pico de aguas lluvias e intensidad media, corresponde por valores puntuales que se representan en áreas realmente pequeñas por esta razón se consideran factores de reducción de la intensidad media en la medida que el área se incrementa, en la tala 15 se presentan valores del factor de reducción permitiendo convertir una intensidad puntual en intensidad media espacial (RAS, 2000).

Tabla 15.Factor de reducción.

Áreas de drenaje (ha)	Factor de reducción
50 – 100	0.99
100 - 200	0.95
200 - 400	0.93
400 - 800	0.90
800 - 600	0.88

Nota: La tabla indica el factor de reducción de la intensidad media de la precipitación, dependiendo el área de drenaje. Tomado de Reglamento Técnico del sector de agua potable y

2.3.1.6. Coeficiente de escorrentía

El coeficiente de escorrentía (C), depende del tipo del suelo, permeabilidad de la zona, pendientes del terreno que hace que la lluvia se convierta en escorrentía. Podemos calcular el C de acuerdo a tablas y valores ya existentes pero con ellos podemos incluir subáreas con valores de escorrentía como el cociente del ponderado de las respectivas áreas (RAS, 2000).

$$C = \frac{(\sum C * A)}{\sum A} (23)$$

La tabla de referencia para los coeficientes de escorrentía es la tabla 16.

Tabla 16. *Coeficiente de escorrentía*

Tipo de superficie	C
Cubiertas	0.75 - 0.95
Pavimentos asfalticos y superficies de concreto	0.70-0.95
Vías adoquinadas	0.70-0.85
Zonas comerciales industriales	0.60-0.95
Residencial, con casas contiguas, predominio de zonas	0.75
duras	
Residencial multifamiliar, con bloque contiguas y zonas	0.60 - 0.75
duras entre ellos	
Residencial unifamiliar, con casas contiguas y	0.40 - 0.60
predominio de jardines	
Residencial, con casas rodeadas de jardines o	0.45
multifamiliares apreciablemente separados	
Residencial, con predominio de zonas verdes y parques-	0.30
cementerios	
Laderas sin vegetación	0.60
Laderas con vegetación	0.30

Parques recreacionales

0.20 - 0.35

Nota: La tabla indica el coeficiente de escorrentía o de impermeabilidad, donde se debe justificar por el tipo de superficie. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.47), por RAS,(2000.)

En el anexo 5 se presenta tablas adicionales de la literatura para coeficientes de escorrentía.

2.3.1.7. Tiempo de concretración

El tiempo de concentración (T_C), se compone del tiempo de entrada que realiza el agua de escorrentía en llegar al sumidero y del recorrido que hace en el colector de acuerdo a la ecuación 27.

• Tiempo de entrada

Posee fórmulas para calcular este tiempo, según el reglamento técnico del sector de agua potable y saneamiento básico (RAS, 2000); la ecuación de FAA de los estados unidos, la fórmula de Kerby y la Soil Conservation Service (SCS)

$$T_e = \frac{0.707*(1.1-C)*L^{\frac{1}{2}}}{\frac{1}{S_3^3}}$$
 (Ecu. FAA) (24)

Dónde:

L= Longitud máxima de flujo de escorrentía superficial

C= Coeficiente de escorrentía

s= Pendiente promedio entre el punto más alejado y el colector

$$T_e = 1.44 * \left(\frac{Lm}{\frac{1}{S_2^2}}\right)^{0.467}$$
 (Ecu. Kerby) (25)

Dónde:

L= Longitud máxima de flujo de escorrentía superficial

m= Coeficiente de retardo *

s= Pendiente promedio entre el punto más alejado y el colector

*Para el valor de m se puede estimar de acuerdo al tipo de superficie de acuerdo a la tabla 17.

Tabla 17. *Coeficiente de retardo*

Tipo de superficie	m
Impermeable	0.02
Suelo sin cobertura, compacto y liso	0.10
Superficie con cobertura moderamente rugosa	0.20
Pastos	0.30
Terreno arborizados	0.70
Pastos densos	0.80

Nota: La tabla indica el coeficiente de retardo (m), basado en el tipo de superficie. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.47), por RAS,(2000.)

$$T_e = \frac{L}{(60*V_S)}$$
 (Ecu. (SCS)) (26)

Dónde:

L= Longitud máxima de flujo de escorrentía superficial V_s = Velocidad superficial

La velocidad superficial puede calcularse de la siguiente forma (RAS, 2000)

$$V_{s} = a * s^{\frac{1}{2}} (27)$$

La constante (a) depender del tipo de superficie según la tabla 18 podemos colocar una constate de velocidad superficial.

Tabla 18.Constante a de velocidad superficial.

Tipo de superficie	a
Bosque con sotobosque denso	0.70

Pastos y patios	2.00
Áreas cultivadas en surcos	2.7
Suelos desnudos	3.15
Áreas pavimentadas y tramos iniciales de quebradas	6.50

Nota: La tabla la constante de velocidad superficial, de acuerdo, al tipo de superficie. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.48), por RAS,(2000).

El tiempo de entrada mínimo es de 5 minutos

• Tiempo de recorrido

El tiempo de recorrido T_t , se debe un proceso iterativo, la ecuación según RAS, (2000)la cual nos da el inicio es la ecuación 26.

$$T_t = \frac{L_c}{(60*V)}$$
 (28)

Dónde:

 L_c =Longitud de colecto.

V = Velocidad media del flujo en el colector.

Para comenzar en el proceso de iteración debemos suponer una velocidad real, para calcular el tiempo de recorrido y con ello calculamos tiempo de entrada, tiempo de concentración y estimar un caudal con el método racional. El tiempo de concentración mínimo establecido para es de 10-20 minutos como máximo y el mínimo como se establece en el tiempo de entrada (RAS, 2000).

La fórmula final del tiempo de concentración es:

$$T_C = T_e + T_t$$
 (29)

2.3.1.8. Díametro mínimo

El diámetro mínimo en rede de aguas lluvias es de 250 mm (RAS, 2000).

En la modificación de la RAS, (2017)El diámetro interno real mínimo permitido en alcantarillado pluvial y combinado es de 260 mm.

2.3.1.9. Velocidad máxima y mínima

La velocidad real mínima para el diseño es de 0.75 m/s para el caudal de diseño (RAS, 2000).

La velocidad máxima dependen del material y deben estar justificados de acuerdo al diseño, en la tabla 19 se muestran algunas velocidad máximas permitidas de acuerdo al tipo de material (RAS, 2000).

Tabla 19. *Velocidades máximas permisibles.*

Tipo de material	V (m/s)
Ladrillo común	3.0
Ladrillo vitrificado y gres	5.0
Concreto	5.0
PVC	10.0

Nota: La tabla indica la velocidad máxima permisible, dependiendo del tipo de material, de acuerdo a la resistencia de la abrasión del material. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.49), por RAS,(2000).

De acuerdo a la resolución 0330 RAS, (2017), La velocidad máxima real en un colector por gravedad no debe sobrepasar los 5 m/s, se determina para el caudal de diseño. La velocidad mínima real permita en colectores es aquella que genere cortante en la pared de la tubería mínimo a 2 Pa

2.3.1.10. Pendiente máxima y mínima

La pendiente mínima debe ser aquella que permita los criterios de autolimpieza y debe cumplir la velocidad mínima. La pendiente máxima es aquella que cumpla con la velocidad máxima real admisible (RAS, 2000).

2.3.1.11. Profundidad de flujo

Para la profundidad hidráulica para aguas lluvias corresponde a flujo

lleno. La profundidad mínima y máxima a la cota clave debe cumplir los criterios como el de alcantarillado sanitario numeral 2.2.1.9.

De acuerdo a la resolución 0330 RAS, (2017). El valor máximo permisible entre la profundidad del flujo para el caudal de diseño en un colector es de 93% del diámetro interno real correspondiente a flujo lleno.

2.4. Alcantarillado Combinado

El alcantarillado combinado es diseñado y construido para conducir aguas negras, industriales y lluvias. Tienen una gran ventaja es que sus colectores se lavan cuando llueve, obtiene una limpieza periódica, aunque son pocos alcantarillados de este tipo en zonas urbanas.

2.4.1. Caudal de diseño

El alcantarillado combinado, se diseña de acuerdo al caudal de aguas lluvias y cuando el caudal de aguas residuales es mayor que el 5 % del caudal de aguas lluvia, para el caudal de diseño se toma la suma de los caudales de los dos, residuales y de lluvias (RAS, 2000).

Para el cálculo del caudal de diseño, las redes de alcantarillado combinando es igual al caudal de aguas lluvia, pero si el caudal de aguas residuales es mayor que el 5% del caudal de aguas lluvias, se debe tomar como caudal de diseño la suma de los caudales de aguas residuales y aguas lluvias, sin incluir el caudal de conexiones erradas (RAS, 2017).

2.4.2. Parámetros de diseño

Para los parámetros de diseño en los sistemas combinados, son los mismos que en los sistemas sanitario y pluvial. Muchos parámetros son anterior mencionados y para valores mínimos y máximo son aquellos mismos que corresponde al alcantarillado pluvial. El aspecto importante que se debe tener en cuenta en los sistemas combinado, la calidad del agua varía de acuerdo al hidrograma pluvial.

2.5. Estructuras complementarias

2.5.1. Conexión de colectores y pozos de inspección

Para la conexión de colectores se necesitan de otras estructuras denominadas pozos de conexión, estos pozos están comunicados por los pozos de inspección y son aquellos que permiten en superficie el mantenimiento y la supervisión de su funcionamiento.

2.5.2. Parámetros de diseño

2.5.2.1. Diámetro

En los pozos comunes el diámetro interior es de 1.20 m y su diámetro es de 1.5 a 2 m. Los pozos para colectores son de diámetros menores de 0.6 m y el diámetro interior debe ser de 1.2 m permite el manejo de instrumentos de limpieza (RAS, 2000).

La resolución 0330 RAS, (2017), el diámetro interno depende de las condiciones hidráulicas, geométricas del empalme de las tuberías, evitando que se crucen entre ellas y que permita su debido conexión. Las estructuras de conexión deben garantizar el ingreso para su mantenimiento y limpieza, los valores mínimos están estipulados en la tabla 20.

 Tabla 20.

 Diámetros interno mínimos de estructuras de conexión

Mayor diámetro de las tuberías conectadas (mm)	Diámetro interno de la estructura (m)
De 200 a 500	1.20
Mayor que 500 hasta 750	1.50
Mayor que 750 hasta 900	1.80

Nota: La tabla indica el diámetro minimo interno de la estructura de conexión, teniendo en cuenta el mayor diámetro de las tuberías conectadas. Tomada de: de Reglamento Técnico del

sector de agua potable y saneamiento básico p 95.Por (RAS, 2017).

Si las estructuras de conexión su limpieza y mantenimiento se realiza con equipo especializado y no necesita ingreso es diámetro mínimo es de 0.8 m.

2.5.2.2. Profundidad

Su profundidad mínima de los pozos de inspección debe ser de 1 m sobre la cota clave del colector superficial (RAS, 2000).

2.5.2.3. Distancia entre pozos

Las distancias entre pozos dependen de los métodos de limpieza, si son métodos manuales la distancia máxima es de 100 a 120 m, para los métodos hidráulicos se pueden llegar hasta los 200 m (RAS, 2000).

2.5.3. Cámaras de caída

2.5.3.1. Parámetros de diseño

Las cámaras de caída son estructuras de unión y son utilices para terrenos con pendientes marcadas.

Diámetro

El diámetro interno real se encuentra en la tabla 21 de acuerdo a la relación del diámetro de la tubería de entrada

Tabla 21.Diámetro de la cámara de caída en función del diámetro de la tubería de entrada

Diámetro interno real tubería	Diámetro interno real mínimo
de entrada (D)	de la tubería de la cámara de
	caída
D ≤ 300 mm	170 mm

300 mm > D ≤ 450 mm	280 mm
$450 \text{ mm} > D \le 900 \text{ mm}$	360 mm

Nota: La tabla muestra el diámetro interno real minimo de la tubería dela cámara de caída, basados en el diámetro real de la tubería de entrada, si es mayor que 900 mm se diseña una conexión para la reducción de energía. Tomada de: de Reglamento Técnico del sector de agua potable y saneamiento básico p 88.Por (RAS, 2017).

2.5.4. Sumideros

2.5.4.1. Parámetros de diseño

Los sumideros captan aguas producto de la escorrentía y se localizan en vías vehiculares y peatonales

Deben ubicarse antes de los cruces de vías, antes de la zona de tránsito peatonal, en puntos bajos y depresiones. Los anchos de inundación dependen del ancho de la vía, ver tabla 22. Debe verificarse la capacidad de recolección de escorrentía. La tubería de conexión del sumidero debe tener un diámetro interno real mínimo de 215 mm, pendiente de 2% y su longitud no debe ser mayor de 15 m (RAS, 2017).

Tabla 22.Ancho de inundación admisible según la clasificación de la vía.

Ancho de la vía (m)	Ancho de inundación
	admisible (m)
< 6	2.00
\geq 6 y < 7	3.00
$\geq 7 \text{ y} < 9$	3.50
≥ 9	4.00

Nota: La tabla indica el ancho de inundación admisible, de acuerdo, al ancho de la vía, para el comportamiento hidráulico de los sumideros. Tomada de: de Reglamento Técnico del sector de agua potable y saneamiento básico p 88.Por (RAS, 2017).

2.5.5. Alividaderos

2.5.5.1. Parámetros de diseño

Caudal de alivio

El caudal de alivio corresponde al caudal medio diario en aguas residuales multiplicadas por un factor de dilución, el cual el factor debe ser mayor que 1 ya que dependen del tamaño del colector, en caso de ser menor que 1 el colector se denomina secundario y son de poco caudal. Si son valores mayores corresponden a estructuras grandes como emisarios y con grandes caudales (RAS, 2000).

La resolución 0330 RAS, (2017), el factor de dilución será aquel que cumpla el vertimiento y requerimientos de calidad y no podrá ser inferior de 5 a 1 de la relación del caudal de aguas lluvias y el caudal medio de aguas residuales.

Volúmenes de alivio

Los volúmenes van de acuerdo a los hidrogramas, ya que los eventos de precipitación generan humedad de acuerdo a la precipitación. Los valores pueden ser entre 10 y 20 L/s*ha y el valor varía de acuerdo aquellas características de la zona y climatológicas (RAS, 2000).

Sistema hidráulico

El diseño hidráulico se debe tener en cuenta el régimen de flujo de los colectores de entrada y salida y las pérdidas de energía, los aliviaderos deben tener espacio para la inspección mínimo de 0.60 m de diámetro y con escalera (RAS, 2017).

2.5.6. Canales

Para el diseño de canales el único flujo que no debe tener es flujo crítico, Los canales deben diseñarse como sistema a gravedad. Si es cerrada la sección transversal, el flujo a superficie libre, donde la profundidad de flujo no exceda el 90% de la altura del conducto. Canales revestidos su pendiente es aquella que no presenta velocidad menor a 0.75m/s, revestidos en concreto la velocidad máxima permita

es de 5 m/s, para otro tipo de revestimiento se basa en el riesgo de erosión que pueda sufrir el canal. Para canales abiertos se prevé zonas e amortiguación, bermas y zonas de mantenimiento (RAS, 2017).

2.5.7. Sifones invertidos

Los sifones invertidos por tuberías paralelas, el alcantarillado sanitario el diámetro interno mínimo real debe ser de 170 mm y la velocidad mínima debe ser 1.0 m/s, para alcantarillado pluvial o combinado el diámetro es de 280 mm y la velocidad mínima de flujo es de 1.2 m/s. Las pendientes no deben ser mayores a 22.5 °. La cota de energía de entrada debe ser mayor que la de salida, y los sifones invertidos deben estar ubicados en estructuras de conexión (RAS, 2017).

2.6. Estaciones de bombeo

Las estaciones de bombeo deben cumplir con requisitos mínimos y algunas condiciones básicas que deben cumplir en su diseño, operación y mantenimiento, de acuerdo a los niveles de complejidad del sistema.

Las estaciones de bombeo de las aguas residuales y pluviales son necesarias para elevarlas o transportarlas cuando el sistema de gravedad de flujo ya no se puede. Las estaciones de bombeo se crean como ayuda cuando las pendientes de los terrenos son muy bajas o las distancias de transporte son muy extensas. Las estaciones de bombeo son costosas, representan gastos importantes en operación y mantenimiento (RAS, 2000).

Los aspectos generales mínimos que debe incluir los estudios para incluir sistemas de bombeo son: caudales de bombeo, condiciones geológicas, estudios topográficos, calidad de agua y otros aspectos de la zona.

2.6.1. Parámetros de diseño

Periodo de diseño

El periodo de diseño se tiene se cuenta de acuerdo al nivel de complejidad según la tabla 23.

Tabla 23.Periodo de diseño, según el nivel de complejidad.

Nivel de complejidad del sistema	Periodo de diseño (años)
Bajo	15
Medio	20
Medio alto	25
alto	30

Nota: La tabla indica el periodo de diseño de acuerdo al nivel de complejidad del sistema, puede ser mayor según los elementos del sistema. Tomado de Reglamento Técnico del sector de

Caudal de diseño

Para una estación de bombeo se tienen en cuenta los caudales: promedio diario, diarios mínimos y máximos y el caudal pico horario. Con los siguientes factores (RAS, 2000):

- Caudal al final del periodo de diseño.
- Caudal mínimo al final del periodo de diseño.
- ❖ Caudal máximo al final de cada etapa del periodo de diseño.
- ❖ Caudal mínimo al final de cada etapa del periodo de diseño.
- Caudal máximo al inicio de la operación de la estación.
- ❖ Caudal máximo al final de la operación de la estación.

La variación de los caudales máximos y ciertos desniveles permiten determinar el tipo de bomba, si son pequeñas estaciones de bombeo se puede tener en cuenta la automatización a el pozo húmedo.

2.6.2. Tipos de sistemas de bombeo

2.6.2.1. Bombas centrífugas

Las bombas centrífugas son las usadas, se accionan por medio de motores eléctricos. Su funcionamiento es similar al de las bombas de agua limpia, el cambio es que las aguas residuales y pluviales conllevan algunas partículas de suspensión. Existen varios tipo de bombas centrífugas: de eje horizontal, eje vertical con instalación de pozo húmedo, de eje vertical con instalación de pozo seco y conjunto de motor-bomba sumergible. Las de eje vertical tienen ventajas en su operación, ya que son manejadas por motores libres de posibles inundaciones y están en niveles superiores. Son usadas para aguas residuales y pluviales (RAS, 2000).

La relación entre el funcionamiento de la bomba y su forma física, se clasifica de acuerdo a su velocidad específica y su ecuación básica es:

Las ecuación básica es, de acuerdo al libro de (Pérez R., 2015) :

$$N_S = \frac{N*(Q^{0.5})}{(g*H)^{0.75}}$$
 (30)

Dónde:

 N_s = Velocidad especifica

N = velocidad de rotación

Q = cantidad de flujo de la bomba

H = Carga total de la bomba

g = Aceleración de la gravedad (9.8 m/s²)

Cavitación

La cavitación es un fenómeno que ocurre en dos etapas y es una formación de burbujas causadas por bajas presiones, donde se puede presentar un colapso pasa fuera de la presión baja y penetra donde se encuentra las presiones más altas. (Pérez R., 2015).).

• Potencia

La trasferencia de energía o potencia en el líquido que se está bombeando se puede expresar así (Pérez R., 2015):

$$P_{HP} = \frac{Q*H^{\gamma}}{76*n} (31)$$

Dónde:

 P_{HP} = Potencia en H.P.

Q = Caudal en 1/s

H = Carga o altura total en m

 $_{v}$ = Peso específico del líquido en Kg/m^{3}

η = Eficiencia del conjunto en %

2.6.2.2. Bombas Helicoidales

Las bombas helicoidales son basadas en el tornillo de Arquímedes, funciona al aire libre y a presión atmosférica. Su rendimiento es bajo y puede estar expuesto a fugas entre la hélice y la canaleta, el tornillo está colocado al desnivel entre sus extremidades y maneja alturas pequeñas de elevación (RAS, 2000).

La instalación del tornillo cumple con una inclinación de 0° a 45°, donde suelen ser las más frecuentes las de 30°, 35° y 38°. El ángulo escogido se debe tener en cuenta de acuerdo las tablas (anexó 6).

Las bombas tornillo giran para elevar el agua dentro de canales de concreto en forma de U, movidas por motores eléctricos. Para reducir la velocidad de los motores como la de bombas tornillo existen 2 tipos de reductores de velocidad: el de poleas de diferente tamaño y las correas en V (Pérez R., 2015).

Las correas reductoras se instalan de acuerdo a los engranajes, el mecanismo permite que no se tenga un atascamiento en los tornillos, deslizándose sobre las poleas evitando el daño en engranajes o motores (Pérez R., 2015).

El mantenimiento de las bombas tornillo:

- Tornillo: El tornillo posee una pintura especial que es resistente a la corrosión y abrasión, si llegase a dañarse se pinta únicamente por la pintura usada en su fabricación.
- Cajas de engranajes: Se debe tener en cuenta catálogos de funcionamiento.
- Correas V: Las correas se revisan de acuerdo a la tensión y se ajustan en los tornillos de los motores
- Acople flexible: se inspecciona cada doce meses y cualquier buje de caucho gastado.
- Motor eléctrico: La marca se consulta de acuerdo a las

- instrucciones de los catálogos.
- Rodamientos: es importante utilizar la grasa recomendada por los fabricantes.

2.6.2.3. Bombas eyectoras

Las bombas eyectoras se conforman por una cámara a la que llega un colector alimentador directamente con el agua y se activa de acuerdo a un sensor eléctrico que activa un compresor que con aire impulsa el agua a la tubería de salida.

3- FASE PRÁCTICA

Diseño de alcantarillado Sanitario

El ejercicio que se presenta a continuación, pretende explicar al detalle un ejercicio de diseño y empate por método de cota clave, teniendo como información de entrada la que se presenta a continuación:

Periodo de diseño: 15 años

Tabla 24Datos para el diseño:

Año	Población (habitantes)	Área (ha)	Densidad (hab/ha)	Consumo neto (L/hab.dia)
2003	5095	13.5		200
2018	6760	17.9	377	200

(Colectores 7 - 8, 5 - 8, 8 - 9). Tomar n = 0.013

Tabla 25Datos de entrada

Colector 7 – 8	Colector 5 – 8	Colector 8 – 9	
Caudal de diseño	Caudal de diseño (LPS):	Caudal de diseño	
(LPS): 4.54	9.94	(LPS): 15.3	
Cota rasante 7: 41.60 m	Cota rasante 5: 41.74 m	Cota rasante 8: 41.58 m	
Cota rasante 8: 41.58 m	Cota rasante 8: 41.58 m	Cota rasante 9: 41.68 m	
Cota clave salida de	Cota clave salida de pozo		
pozo 7: 40.18 m	5: 40.53 m		
Longitud: 100 m	Longitud: 100 m	Longitud: 100 m	

Ecuaciones y proceso para el diseño de cada colector

Tabla 26 *Ecuaciones para el diseño de cada colector*

Ecuación	Uso	Id
$D_d = 1.548 \left(\frac{nQ_d}{S^{1/2}}\right)^{3/8}$	Esta ecuación se usa para determinar el diámetro de diseño cuando el colector funciona a tubo lleno	Anexo 1 (35)
$Q_o = 0.312 \left(\frac{D_c^{8/3} S^{1/2}}{n} \right)$	Determinar el caudal a tubo lleno con el diámetro comercial seleccionado. Q_o : caudal a tubo lleno S : pendiente del colector; D_c : diámetro mínimo comercial.	(36)
$E = d + \frac{V^2}{2g}$	Determinar la energía específica bajo las condiciones reales de flujo. <i>E</i> : energía específica <i>d</i> : profundidad de flujo en condiciones reales de flujo <i>V</i> : velocidad en condiciones reales de flujo g: gravedad 9.806 m/s ²	(37)
$S = \frac{\Delta y}{\Delta x}$	Determinar la pendiente del colector S : pendiente del colector Δy : diferencia de altura entre cotas claves del colector Δx : diferencia entre las coordenadas de los pozos de inspección.	(38)
$N_F = \frac{V}{\sqrt{gH}}$	Determinar el número de Froude y las condiciones de flujo crítico, subcrítico y supercrítico. N_F : número de Froude H : profundidad hidráulica de flujo V : velocidad en condiciones reales de flujo g: gravedad 9.806 m/s ²	(5)
$ au = \gamma RS$	Determinar el esfuerzo cortante en las condiciones reales de flujo. τ: esfuerzo cortante Pa γ: peso específico del fluido N/m^3 R: radio hidráulico en condiciones reales m S: pendiente del colector.	(21)
Cb: cota batea	Nivel del punto más bajo de la sección transversal externa de una tubería o colector	Def

Nivel del punto más alto de la	Def
sección transversal externa de una	
tubería o colector	

○ Diseño del colector 7 – 8

Tabla 27 Datos para el colector 7-8.

Colector 7 – 8				
Caudal de diseño (LPS): 4.54				
Cota rasante 7: 41.60 m				
Cota rasante 8: 41.58 m				
Cota clave salida de pozo 7: 40.18 m				
Longitud: 100 m				

1. Caudal de diseño

El caudal de diseño fue calculado previamente. Sin embargo, en el numeral, 2.2.1.4. De esta guía, explicamos cómo calcular así el caudal máximo horario ecuación (13), aplicando el factor de mayoración. Donde no puede ser menor, de acuerdo a la norma explicada en el numeral 2.2.1.4. Como poseemos el caudal de diseño simplemente hacemos conversión de unidades.

$$Q_d = \frac{4.54 lps}{1000} = 0.00454 \frac{m^3}{s}$$

2. Diámetro mínimo

2.1. Pendiente del colector

Antes de determinar el diámetro mínimo, es necesario definir la pendiente que el colector va a tener; si es un colector inicial, las profundidades mínimas estarán condicionadas por lo que establezca la norma. Por otro lado, si es un colector de continuidad al flujo, la

profundidad en el pozo aguas arriba (pozo inicial) dependerá de la hidráulica de los colectores inmediatamente anteriores, de esta manera, la profundidad aguas abajo del colector (pozo final) debe ser definida por el diseñador.

Con base a lo explicado en las normas en el numeral 2.2.1.9.

Pendiente colector 7 - 8:

- Cota clave en 7: 40.18 m
- Profundidad en 7 : **1.42 m**
- Profundidad mínima en 8 para que el colector este horizontal:
 1.40 m
- Profundidad seleccionada en 8: 1.65 m
- Cota clave en 8: 39.93 m

$$S = \frac{\Delta y}{\Delta x} = \frac{40.18 \, m - 39.93 \, m}{100 \, m} * 100$$

$$S = 0.25\%$$

2.2.Diámetro de diseño

Una vez definida la pendiente podemos establecer cuál es el diámetro necesario para transportar el caudal de diseño:

$$D_d = 1.548 \left(\frac{nQ_d}{S_2^{\frac{1}{2}}} \right)^{\frac{3}{8}}$$

Reemplazamos valores:

$$D_d = 1.548 \left(\frac{0.013 * 0.004m^3 / s)}{0.0025^{1/2}} \right)^{3/8}$$

$$D_d = 0.124 \ m$$

3. Diámetro comercial

Se debe seleccionar un diámetro comercial (catálogos) superior al diámetro obtenido para el diámetro de diseño.

Figura 3 Catálogo de tuberías de alcantarillado, Novafort

TUBERÍAS						
Tuberías Alcantarillado Novafort Tramos de 6 metros		ERENCIA	PRECIO POR	Diámetro pulg	unidad de empaque	Diámetro mm
novalore framos do o modeos	•	2900090	Tubo	4	1 tubo	110
	•	2900092	Tubo	6	1 tubo	160
	0	2900094	Tubo	8	1 tubo	200
	•	2900081	Tubo	10	1 tubo	250
	•	2900083	Tubo	12	1 tubo	315
	•	2902493	Tubo	14	1 tubo	355
	•	2900085	Tubo	16	1 tubo	400
		2900087	Tubo	18	1 tubo	450
	•	2900089	Tubo	20	1 tubo	500

Nota: La figura representa el diámetro de las tuberías como catalogo comercial para poder obtener el diámetro. Tomado de PAVCO, por PAVCO, (n.d.), https://pavcowavin.com.co/tuberia-pvc-alcantarillado-novafort-pavco.

Debe cumplir con lo establecido en la norma explicado en el 2.2.1.5., el escogido es:

$$D_c = 200mm (8")$$

4. Relaciones hidráulicas a tubo lleno

Se deben calcular las relaciones hidráulicas para las condiciones de flujo con el diámetro comercial seleccionado; para esto se debe obtener la relación entre el caudal de diseño y el caudal a tubo lleno:

4.1. Caudal a tubo lleno

Haciendo uso de la ecuación de Manning se puede calcular el caudal a tubo lleno (Qo):

$$Q_o = 0.312 \left(\frac{D_c^{8/3} S^{1/2}}{n} \right)$$

$$Q_o = 0.312 \left(\frac{(0.2 \, m)^{8/3} (0.0025)^{1/2}}{0.013} \right)$$

$$Q_o = 0.01642 \, m^3/s$$

4.2. Velocidad a tubo lleno

Haciendo uso de la ecuación de continuidad (Vo):

$$V_o = \frac{4Q_o}{\pi D^2}$$

$$V_o = \frac{4 * (0.01642m^3/s)}{\pi (0.200m)^2}$$

$$V_o = 0.523m/s$$

4.3. Radio hidráulico a tubo lleno

$$R_o = \frac{A_o}{P_{mo}} = \frac{\pi D^2}{4\pi D} = \frac{D}{4}$$
$$R_o = \frac{0.200 \text{ m}}{4}$$

$$R_o = 0.05 \, m$$

4.4.Relación Q/Qo.

$$\frac{Q}{Q_0} = \frac{0.00454}{0.01642} = 0.28$$

4.5. Variables hidráulicas flujo real

Con la relación Q/Qo establecida en el numeral anterior, podemos obtener los valores para variables como:

$$\frac{V}{V_o} = 0.713 \quad V = 0.373 \, m/s$$

$$\frac{d}{D} = 0.409 \quad d = 0.08 \, m$$

$$\frac{H_h}{D} = 0.307 \quad H_h = 0.06 \, m$$

$$\frac{R}{R_o} = 0.874 \quad R = 0.044 \, m$$

4.6. Energía específica, esfuerzo cortante y número de Froude

$$\frac{V^2}{2g} = 0.007 \, m \qquad E = 0.09m$$

$$N_F = \frac{0.373 \, m/s}{\sqrt{9.806 \, m}/_{s^2} \, x 0.06 \, m}$$

$$N_F = 0.5$$

$$\tau = 9810 \, N/_{m^3} \, x \, 0.044 \, m \, x \, 0.0025$$

 $\tau = 1.1 \, Pa$ Flujo subcrítico

Norma la resolución 0330 de 2017, explicados en los numerales 2.2.1.6., 2.2.1.7. Y 2.2.1.8.

5. Cotas

Tabla 28Datos de cotas para el colector 7-8.

Cota	7	8
CR	2741.6	2741.58
$\mathbf{C}_{\mathbf{B}} = \mathbf{C}_{\mathbf{C}} - \mathbf{D}_{\mathbf{C}}$	2739.98	2739.73
$C_E = C_C + E$	2740.07	2739.82
$Cc = C_R - H$	2740.18	2739.93
$\mathbf{C_d} = \mathbf{C_C} + \mathbf{d}$	2740.06	2739.81
H	1.42	1.62

○ Diseño del colector 5 – 8

Tabla 29Datos para el colector 5-8.

Colector 5 – 8				
Caudal de diseño (LPS): 9.94				
Cota rasante 5: 41.74 m				
Cota rasante 8: 41.58 m				
Cota clave salida de pozo 5: 40.53 m				
Longitud: 100 m				

1. Caudal de diseño

El caudal de diseño fue calculado previamente. Sin embargo, en el numeral, 2.2.1.4. De esta guía, explicamos cómo calcular así el caudal máximo horario ecuación (13), aplicando el factor de mayoración. Donde no puede ser menor, de acuerdo a la norma explicada en el numeral 2.2.1.4. Como poseemos el caudal de diseño simplemente hacemos conversión de unidades.

$$Q_d = \frac{9.94 lps}{1000} = 0.00994 \, m^3 /_s$$

2. Diámetro mínimo

2.1. Pendiente del colector

Antes de determinar el diámetro mínimo, es necesario definir la pendiente que el colector va a tener; si es un colector inicial, las profundidades mínimas estarán condicionadas por lo que establezca la norma. Por otro lado, si es un colector de continuidad al flujo, la profundidad en el pozo aguas arriba (pozo inicial) dependerá de la hidráulica de los colectores inmediatamente anteriores, de esta manera, la profundidad aguas abajo del colector (pozo final) debe ser definida por el diseñador.

Con base a lo explicado en las normas en el numeral 2.2.1.9.

Pendiente colector 5 - 8:

- Cota clave en 5: **40.53 m**
- Profundidad en 5 : 1.21 m
- Profundidad mínima en 8 para que el colector este horizontal:
 1.05 m
- Profundidad seleccionada en 8: 1.25 m
- Cota clave en 8: 40.33 m

$$S = \frac{\Delta y}{\Delta x} = \frac{40.53 \ m - 40.33 \ m}{100 \ m} * 100$$

$$S = 0.20\%$$

2.2.Diámetro de diseño

Una vez definida la pendiente podemos establecer cuál es el diámetro necesario para transportar el caudal de diseño:

$$D_d = 1.548 \left(\frac{nQ_d}{S^{\frac{1}{2}}} \right)^{\frac{3}{8}}$$

Reemplazamos valores:

$$D_d = 1.548 \left(\frac{0.013 * 0.00994m^3 / s)}{0.0025^{1/2}} \right)^{3/8}$$

$$D_d = 0.173 \ m$$

3. Diámetro comercial

Se debe seleccionar un diámetro comercial (catálogos) superior al diámetro obtenido para el diámetro de diseño.

Figura 4Catálogo de tuberías de alcantarillado, Novafort

TUBERÍAS						
Tuberías Alcantarillado Novafort Tramos de 6 metros		ERENCIA	PRECIO POR	Diámetro pulg	unidad de empaque	Diámetro mm
	•	2900090	Tubo	4	1 tubo	110
	•	2900092	Tubo	6	1 tubo	160
	0	2900094	Tubo	8	1 tubo	200
	•	2900081	Tubo	10	1 tubo	250
	•	2900083	Tubo	12	1 tubo	315
	•	2902493	Tubo	14	1 tubo	355
	•	2900085	Tubo	16	1 tubo	400
	•	2900087	Tubo	18	1 tubo	450
	•	2900089	Tubo	20	1 tubo	500

Nota: La figura representa el diámetro de las tuberías como catalogo comercial para poder obtener el diámetro. Tomado de PAVCO, por PAVCO, (n.d.), https://pavcowavin.com.co/tuberia-pvc-alcantarillado-novafort-pavco.

Debe cumplir con lo establecido en la norma explicado en el 2.2.1.5., el escogido es:

$$D_c = 200mm (8")$$

4. Relaciones hidráulicas a tubo lleno

Se deben calcular las relaciones hidráulicas para las condiciones de flujo con el diámetro comercial seleccionado; para esto se debe obtener la relación entre el caudal de diseño y el caudal a tubo lleno:

4.1. Caudal a tubo lleno

Haciendo uso de la ecuación de Manning se puede calcular el caudal a tubo lleno (Qo):

$$Q_o = 0.312 \left(\frac{D_c^{8/3} S^{1/2}}{n} \right)$$

$$Q_o = 0.312 \left(\frac{(0.200 \text{ m})^{8/3} (0.002)^{1/2}}{0.013} \right)$$

$$Q_o = 0.01468 \text{ m}^3/\text{s}$$

4.2. Velocidad a tubo lleno

Haciendo uso de la ecuación de continuidad (Vo):

$$V_o = \frac{4Q_o}{\pi D^2}$$

$$V_o = \frac{4 * (0.01468m^3/s)}{\pi (0.200m)^2}$$

$$V_o = 0.467m/s$$

4.3. Radio hidráulico a tubo lleno

$$R_o = \frac{A_o}{P_{mo}} = \frac{\pi D^2}{4\pi D} = \frac{D}{4}$$

$$R_o = \frac{0.200 \ m}{4}$$

$$R_0 = 0.05 \ m$$

4.4. Relación Q/Qo.

$$\frac{Q}{Q_0} = \frac{0.00994}{0.01468} = 0.68$$

4.5. Variables hidráulicas flujo real

Con la relación Q/Qo establecida en el numeral anterior, podemos obtener los valores para variables como:

$$\frac{V}{V_0} = 0.931$$
 $V = 0.435 \, m/s$

$$\frac{d}{D} = 0.672 \ d = 0.13 \ m$$

$$\frac{H_h}{D} = 0.595$$
 $H_h = 0.12 m$

$$\frac{R}{R_o} = 1.163 \ R = 0.058 \ m$$

4.6. Energía específica, esfuerzo cortante y número de Froude

$$\frac{V^2}{2g} = 0.01 \, m$$
 $E = 0.14m$

$$N_F = \frac{0.435 \, m/s}{\sqrt{9.806 \, m/_{S^2} \, x 0.12 \, m}}$$

$$N_F = 0.4$$

$$\tau = 9810 \, N/_{m^3} \, x \, 0.058 \, m \, x \, 0.002$$

 $\tau = 1.2 \, Pa$ Flujo subcrítico

Norma la resolución 0330 de 2017, explicados en los numerales 2.2.1.6., 2.2.1.7. Y 2.2.1.8.

5. Cotas

Tabla 30

Datos de cotas para el colector 5-8.

Cota	5	8
CR	2741.74	2741.58
$\mathbf{C}_{\mathbf{B}} = \mathbf{C}_{\mathbf{C}} - \mathbf{D}_{\mathbf{C}}$	2740.33	2740.13
$C_E = C_C + E$	2740.47	2740.27
$\mathbf{Cc} = \mathbf{C_R} - \mathbf{H}$	2740.53	2740.33
$C_d = C_C + d$	2740.46	2740.25
Н	1.21	1.25

○ Diseño del colector 8 – 9

Tabla 31Datos para el colector 8-9.

Colector 8 – 9
Caudal de diseño (LPS): 15.3
Cota rasante 8: 41.58 m
Cota rasante 9: 41.68 m

Longitud: 100 m

3. Caudal de diseño

El caudal de diseño fue calculado previamente. Sin embargo, en el numeral, 2.2.1.4. De esta guía, explicamos cómo calcular así el caudal máximo horario ecuación (13), aplicando el factor de mayoración. Donde no puede ser menor, de acuerdo a la norma explicada en el numeral 2.2.1.4. Como poseemos el caudal de diseño simplemente hacemos conversión de unidades.

$$Q_d = \frac{15.3 lps}{1000} = 0.0153 \, m^3 /_{S}$$

4. Diámetro mínimo

5.1. Pendiente del colector

Antes de determinar el diámetro mínimo, es necesario definir la pendiente que el colector va a tener; si es un colector inicial, las profundidades mínimas estarán condicionadas por lo que establezca la norma. Por otro lado, si es un colector de continuidad al flujo, la profundidad en el pozo aguas arriba (pozo inicial) dependerá de la hidráulica de los colectores inmediatamente anteriores, de esta manera, la profundidad aguas abajo del colector (pozo final) debe ser definida por el diseñador.

Con base a lo explicado en las normas en el numeral 2.2.1.9.

Pendiente colector 8 - 9:

 Cota clave en 8: inicialmente se toma la cota clave más baja de entrada al pozo de inspección 8, corresponde a la cota de llegada del colector 7 – 8: 39.93 m

- Profundidad en 8 : 1.65 m
- Profundidad mínima en 8 para que el colector este horizontal:
 1.75 m
- Profundidad seleccionada en 8: 1.90 m
- Cota clave en 9: **39.78 m**

$$S = \frac{\Delta y}{\Delta x} = \frac{39.93 \, m - 39.78 \, m}{100 \, m} * 100$$
$$S = 0.15\%$$

5.2.Diámetro de diseño

Una vez definida la pendiente podemos establecer cuál es el diámetro necesario para transportar el caudal de diseño:

$$D_d = 1.548 \left(\frac{nQ_d}{S^{\frac{1}{2}}} \right)^{\frac{3}{8}}$$

Reemplazamos valores:

$$D_d = 1.548 \left(\frac{0.013 * 0.0153m^3 / s)}{0.0015^{1/2}} \right)^{3/8}$$

$$D_d = 0.214 \ m$$

6. Diámetro comercial

Se debe seleccionar un diámetro comercial (catálogos) superior al diámetro obtenido para el diámetro de diseño.

Figura 5Catálogo de tuberías de alcantarillado, Novafort

TUBERÍAS							
Tuberías Alcantarillado Novafort Tramos de 6 metros	REFERENCIA		PRECIO POR	Diámetro pulg	unidad de empaque	Diámetro mm	
	•	2900090	Tubo	4	1 tubo	110	
	•	2900092	Tubo	6	1 tubo	160	
	•	2900094	Tubo	8	1 tubo	200	
	0	2900081	Tubo	10	1 tubo	250	
	•	2900083	Tubo	12	1 tubo	315	
	•	2902493	Tubo	14	1 tubo	355	
	•	2900085	Tubo	16	1 tubo	400	
	•	2900087	Tubo	18	1 tubo	450	
	•	2900089	Tubo	20	1 tubo	500	

Nota: La figura representa el diámetro de las tuberías como catalogo comercial para poder obtener el diámetro. Tomado de PAVCO, por PAVCO, (n.d.), https://pavcowavin.com.co/tuberia-pvc-alcantarillado-novafort-pavco.

Debe cumplir con lo establecido en la norma explicado en el 2.2.1.5., el escogido es:

$$D_c = 250mm (10")$$

7. Relaciones hidráulicas a tubo lleno

Se deben calcular las relaciones hidráulicas para las condiciones de flujo con el diámetro comercial seleccionado; para esto se debe obtener la relación entre el caudal de diseño y el caudal a tubo lleno:

7.1. Caudal a tubo lleno

Haciendo uso de la ecuación de Manning se puede calcular el caudal a tubo lleno (Qo):

$$Q_o = 0.312 \left(\frac{D_c^{8/3} S^{1/2}}{n} \right)$$

$$Q_o = 0.312 \left(\frac{(0.250 \, m)^{8/3} (0.0015)^{1/2}}{0.013} \right)$$

$$Q_o = 0.02305 \, m^3/s$$

7.2. Velocidad a tubo lleno

Haciendo uso de la ecuación de continuidad (Vo):

$$V_o = \frac{4Q_o}{\pi D^2}$$

$$V_o = \frac{4 * (0.02305m^3/s)}{\pi (0.250m)^2}$$

$$V_o = 0.470m/s$$

7.3. Radio hidráulico a tubo lleno

$$R_o = \frac{A_o}{P_{mo}} = \frac{\pi D^2}{4\pi D} = \frac{D}{4}$$

$$R_o = \frac{0.250 \ m}{4}$$

$$R_o = 0.0625 \ m$$

7.4. Relación Q/Qo.

$$\frac{Q}{Q_o} = \frac{0.0153}{0.02305} = 0.66$$

7.5. Variables hidráulicas flujo real

Con la relación Q/Qo establecida en el numeral anterior, podemos obtener los valores para variables como:

$$\frac{V}{V_o} = 0.927 \quad V = 0.435 \, m/s$$

$$\frac{d}{D} = 0.666 \ d = 0.17 \ m$$

$$\frac{H_h}{D} = 0.585 \ H_h = 0.15 \ m$$

$$\frac{R}{R_0} = 1.16 \ R = 0.073 \ m$$

7.6. Energía específica, esfuerzo cortante y número de Froude

$$\frac{V^2}{2g} = 0.010 \, m \qquad E = 0.18m$$

$$N_F = \frac{0.435 \, m/s}{\sqrt{9.806 \, m/_{S^2} \, x 0.15 \, m}}$$

$$N_F = 0.4$$

$$\tau = 9810 \, N/_{m^3} \, x \, 0.058 \, m \, x \, 0.002$$

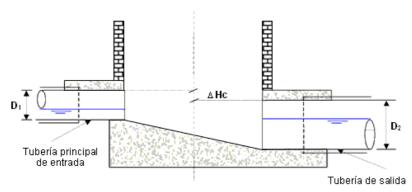
 $\tau = 1.1 \, Pa$ Flujo subcrítico

Norma la resolución 0330 de 2017, explicados en los numerales 2.2.1.6., 2.2.1.7. Y 2.2.1.8.

8. Cotas

Tabla 31Datos para el colector 8-9.

Cota	8	9
CR	2741.58	2741.68
$\mathbf{C_B} = \mathbf{C_C} - \mathbf{D_C}$	2739.68	2739.53
$\mathbf{C}_{\mathbf{E}} = \mathbf{C}_{\mathbf{C}} + \mathbf{E}$	2739.86	2739.71


$Cc = C_R - H$	2739.93	2739.78
$\mathbf{C_d} = \mathbf{C_C} + \mathbf{d}$	2739.85	2739.70
Н	1.65	1.9

Empate por cota clave

Colectores 5 - 87 - 88 - 9 en el pozo 8

El método que se presentan en el numeral 2.1.8.2. Empate por cota clave, como se muestra en la siguiente imagen y usando las ecuaciones (8) y (9).

Figura 6 *Explicación de empate de los colectores*

Nota: La figura representa una explicación del empate de los colecotres por cota de energía. Tomado de elementos de diseño de acueductos y alcantarillados, p 285, por (Cualla, 1995).

Tabla 32 *Empates de los colectores*

Empate 7-8 8-9	Empate 5-8 8-9					
$\Delta H_{c} = \frac{1}{2} (0.250 - 0.200) = 0.025 \mathbf{m}$	$\Delta H_c = \frac{1}{2} (0.250 - 0.200) = 0.025 \text{ m}$					
$\approx 3 \mathbf{cm}$	$\approx 3 \text{ cm}$					

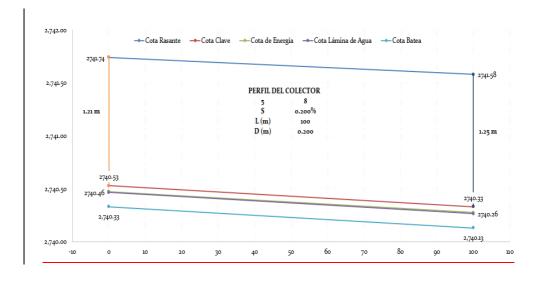
Teniendo en cuenta el ΔH_c para ambos casos (unión 7-8 8-9 y 5-8 8-9),

la cota clave del colector de salida (8-9) debe desplazarse 3 cm hacia abajo, tomando el valor de:

$$C_{C8} = 2739.93 \, m - 0.03 \, m = 2739.9 \, m$$

Recalculando las demás cotas:

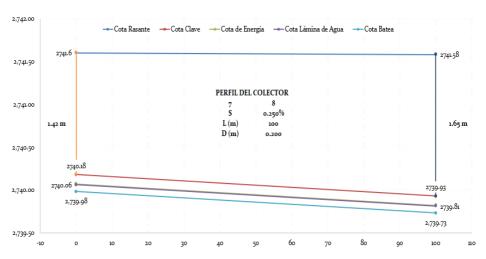
Tabla 33 *Recalculando las cotas*


	Sin er	npate	Con empate				
Cota	8	9	8	9			
CR	2741.58	2741.68	2741.58	2741.68			
$\mathbf{C}_{\mathbf{B}} = \mathbf{C}_{\mathbf{C}} - \mathbf{D}_{\mathbf{C}}$	2739.68	2739.53	2739.65	2739.5			
$\mathbf{C}_{\mathbf{E}} = \mathbf{C}_{\mathbf{C}} + \mathbf{E}$	2739.86	2739.71	2729.83	2739.68			
$\mathbf{Cc} = \mathbf{C_R} - \mathbf{H}$	2739.93	2739.78	2739.9	2739.75			
$\mathbf{C_d} = \mathbf{C_C} + \mathbf{d}$	2739.85	2739.70	2739.82	2739.67			
Н	1.65	1.9	1.68	1.93			

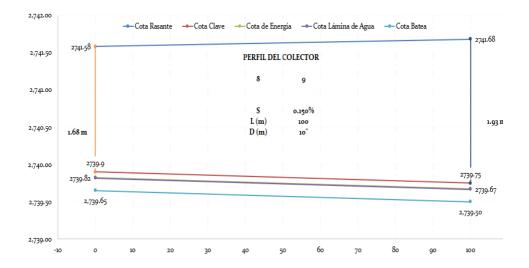
Perfiles de los colectores:

• Colector 5-8

Figura 7


Perfil del colector 5-8

• *Colector 7 − 8*


Figura 8

Perfil del colector 7-8

• *Colector 8 − 9*

Figura 9Perfil del colector 8-9

Emi	oate	cota	de	energia	eiei	cicio	1	a	desarro	llar
	Juic	COLL	uc	CHICK SIG	0,10	CICIO	_	•	acour i o	11441

NOMBRE:_			
CÓDIGO:			

Nota: **no modifique** el número de hojas destinadas, son suficientes. Convierta el archivo a PDF y súbalo en donde el docente le indique. Siga las instrucciones que le indique su docente.

Con la actividad que se propone se pretende revisar el estudio independiente realizado por los estudiantes sobre el tema empate por cota de energía; por esto deben desarrollar detalle el ejercicio que se presenta a continuación. Deben realizar el empate por cota de energía en el pozo 6 y el diseño de los colectores que se involucran en el (colectores 4-6, 5-6, 6-7). Coloque la información solicitada en cada hoja destinada para tal fin.

Datos de entrada: n 0.013

Colector 4 - 6	Colector 5 - 6	Colector 6 - 7
Caudal de diseño (LPS):	Caudal de diseño (LPS):	Caudal de diseño (LPS):
5.54	10.94	16.3
Cota rasante 4: 2741.60 m	Cota rasante 5: 2741.74	Cota rasante 6: 2739.00 m
	m	
Cota rasante 6: 2739.00 m	Cota rasante 6: 2739.00	Cota rasante 7: 2741.68 m
	m	
Cota clave salida pozo 4:	Cota clave salida pozo	
2740.18 m	5: 2740.53 m	
Longitud: 80 m	Longitud: 100 m	Longitud: 100 m

Desarrollo

Colector 4 - 6

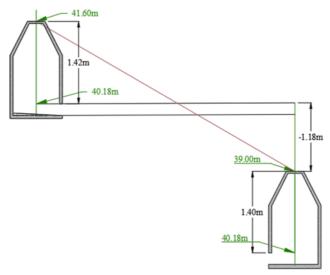
La información que se encuentra en color azul (ver tabla), son los datos de entrada en las hojas de diseño que cada estudiante ha venido desarrollando a lo largo del curso; las profundidades de instalación de la tubería son elección del diseñador y en este ejemplo puntual dependen de las condiciones aguas arriba. Para el colector en estudio (4-6), la profundidad en el pozo inicial (4), viene establecida por la información inicialmente suministrada:

$$H_4 = C_{R4} - C_{CS4} = 41.60m - 40.18m$$

$$H_4 = 1.42m$$

La profundidad mínima en P6, para que el colector quede horizontal es:

$$H_{\text{min6}} = C_{\text{R6}} - C_{\text{cs4}} = 39.00\text{m} - 40.18\text{m}$$


$$H_{\text{min6}} = -1.18m$$

A partir de la profundidad mínima determinada para el P6, se da pendiente al colector profundizando P6 a valores superiores al Hmin determinado. A través de un método de prueba - error, se cambian las profundidades para el pozo 6, teniendo en cuenta el cumplimiento de la normativa vigente (Res. 0330 de 2017), en cuanto a esfuerzo cortante y relación d/D.

$$\tau > 1.0 \, N/m2$$
 $d/D < 0.85$

Figura 10

Perfil del colector 4-6, profundidad mínima

El diseño será:

Tabla 34Verificación del diseño 4-6

	Cuadro para verificar el diseño 4-6												
Datos de entrada			RH		Cálcu	los			Datos d	le Salida			
Pozos	4 6	Und	KH	Qd	0,00)554	m3/ s	S	0,0298		m/m		
Pesp	9810	N/m 3	V/v o	D diseño	3,3	0,08 4	m	СС	40,18	37,80	m		
n	0,013	AD	0,54	Qo	0,05	0,05663		CE	40,08	37,70	m		
Qd	5,54	1/s	d/D	Vo	1,8	03	m/s	CL	40,03	37,65	m		
L	80	m	0,25	Q/Qo	0,	10	AD	СВ	39,98	37,60	m		
CR	41, 39,0 6 0	m	R/R o	v2/2g	0,0	0,048		V	0,9	973	m/s		
Hmin (Pf)	-1,18	m	0,59	d	0,05		m	Е	0.	10	m		
Н	1,4 2 1,2	m	H/D	R	0,030		m	Ť	8	,6	N/m 2		
D comercial	8" 0,20 0	m	0,17	Н	0,0	03	m	NF	1,7	Superc	rítico		

Colector 5 - 6

Para el colector en estudio (5-6), la profundidad en el pozo inicial (5), viene establecida por la información inicialmente suministrada:

$$H_5 = C_{R5} - C_{cs5} = 41.74m - 40.53m$$

 $H_5 = 1.21m$

La profundidad mínima en P₆, para que el colector quede horizontal es:

$$H_{min6} = C_{R6} - C_{cs4} = 39.00m - 40.53m$$

 $H_{min6} = -1.53m$

A partir de la profundidad mínima determinada para el P_6 , se da pendiente al colector profundizando P_6 a valores superiores al H_{min} determinado. A través de un método de prueba - error, se cambian las profundidades para el pozo 6, teniendo en cuenta el cumplimiento de la normativa vigente (Res. 0330 de 2017), en cuanto a esfuerzo cortante y relación d/D. En este caso se puede empezar por 1.20m sabiendo que la profundidad mínima por norma es de ese valor.

$$\tau > 1.0 \, N/m2$$
 $d/D < 0.85$

El diseño final será:

Tabla 35Diseño final 5-6

			C	uadro p	oara verifi	car el	diseño 5	5-6				
Datos de entrada			RH		Cálc	ulos			Datos de Salida			
Pozos	5	6	Und	KII	Qd	0,0	1094	m3/ s	S	0,0	273	m/m
Pesp	98	310	N/m 3	V/vo	D diseño	4,3	0,11 0	m	C C	40,5 3	37,8	m
n	0.0	013	AD	0.66	Oo	0.0)5425	m3/ s	C E	40,4 7	37,7 4	m
Qd		,94	1/s	d/D	Vo		1,727		C L	40,4 0	37,6 7	m
L		00	m	0,35	Q/Qo		0,20	AD	C B	40,3	37,6 0	m
CR	41,7	39,0 0	m	R/R o	v2/2g		.066	m	v		40	m/s
Hmin (Pf)		.53		0,77	d	1			E			
. ,		,	m			0,07		m		0,		m N/m
H Dcomercia	1,21	1,2 0,20	m	H/D	R		,039	m	T N),3	2
1	8"	0	m	0,25	Н	0	,05	m	F	1,6	Super	crítico

Antes de pasar al diseño del colector 6-7, se deben comparar las cotas de energía a la llegada al pozo 6:

$$C_{E4-6} = 37.70 \text{ m}$$
 $C_{E5-6} = 37.74 \text{m}$

Nota: el colector que define el empate es el que llega con la cota de energía más baja; que en este caso es el (4-6), entonces debe rediseñarse el o los demás colectores para que lleguen con la misma cota de energía del (4-6).

Rediseño Colector 5 – 6

El colector 5-6 puede ser rediseñado bajo la siguiente alternativa: Alternativa 1: D=8" profundidad $H_6=1.24$ m.

Tabla 36Rediseño del colector 5-6

	Cuadro para verificar el diseño 5-6												
Dat	Datos de entrada				Cálculos				Datos de Salida				
Pozos	5	6	Und	RH	Qd	0,0	1094	m3/ s	S	0,0	277	m/m	
Pesp	98	310	N/m 3	V/vo	Ddiseñ o	4,3	0,10 9	m	C C	40,5 3	37,7 6	m	
n	0.0	013	AD	0.66	Oo	0.0	5464	m3/ s	CE	40,4 7	37,7 0	m	
Qd	ĺ	.94	1/s	d/D	Vo		739	m/s	CL	40,4 0	37,6 3	m	
L		00	m	0,35	Q/Qo		,20	AD	C B	40,3	37,5 6	m	
	41,7	39,0		R/R									
CR	4	0	m	0	v2/2g	İ	067	m	V		48	m/s	
Hmin (Pf)		,53	m	0,77		d 0,07		m	Е		14	m N/m	
H Dcomercia	1,21	1,24 0,20	m	H/D	R	0,	039	m	Ť	10),5	2	
1	8"	0	m	0,25	Н	0	,05	m	NF	1,6	Super	crítico	

Colector 6-7

El colector 6 – 7 (colector de salida del pozo 6) debe ser diseñado teniendo en cuenta los colectores aguas arriba (4-6 y 5-6). Al pozo 6 ingresan don colectores con diámetros de 8", por ende, el colector de salida no debe tener un diámetro menor a 8". No se permite la reducción de diámetro.

1. Para el diseño del colector saliente, se supone empate por cota calve; esto para tomar referencia de la profundidad en el punto inicial (6) del colector 6-7. Se toma como referencia el colector con mayor diámetro, como en este caso se tienen diámetros iguales, se toma la cota clave más baja de los colectores de entrada. En este caso será la del colector (5-6), es decir H6 = 37.76m. Con este valor se procede a realizar el diseño del colector de salida (6-7).

Tabla 37Verificación del diseño 6-7

	Cuadro para verificar el diseño 6-7												
Datos de entrada			RH		Cálc	ulos		Datos de Salida					
Pozos	6	7	Und	KII	Qd	0,0	0163	m3/ s	S	0,0	014	m/m	
Pesp	98	310	N/m 3	V/vo	Ddiseñ o	8,8	0,22 2	m	C C	37,7 6	37,6 2	m	
n	0,0	013	AD	0,96	Oo	0,0	2227	m3/ s	CE	37,7 0	37,5 6	m	
Qd	16	5,3	1/s	d/D	Vo	0.	454	m/s	CL	37,6 9	37,5 5	m	
L		00	m	0.71	Q/Qo		,73	AD	C B	37,5 1	37,3 7	m	
CR	39	41,6 8	m	R/R o	v2/2g		010	m	v	0.436		m/s	
Hmin (Pf)		92		1,18	d	<u> </u>	,18		E		19		
, ,	1,2		m					m				M/m	
H Dcomercia	4	4,06 0,25	m	H/D	R	0,	074	m	Ф		,0	2	
1	10"	0	m	0,65	H	0	,16	m	NF	0,3	subc	rítico	

ANALISIS DETALLADO EMPATE POR COTA DE ENERGIA PARA FLUJO SUPERCRITICO A TRAVES DE ESTRUCTURAS CON CAIDA:

1. Determinar si la entrada a la tubería de salida es sumergida o no sumergida

$$\frac{0.0163 \, m^3/_S}{(0.250m)^2 \sqrt{\left(9.806 \, m/_{S^2}\right) (0.250m)}} = 0.17 \le 0.62$$

Con esto, la entrada es de tipo no sumergida, aplicando la metodología para este caso, se tiene:

2. La caída en el pozo H_w , se obtiene de la ecuación:

$$\frac{H_w}{D_c} = K \left(\frac{H_c}{D_c} + \frac{H_e}{D_c} \right)$$

Dónde:

 H_c : energía específica para las condiciones de flujo crítico

$$H_c = Y_c + \frac{V_c^2}{2g}$$

 H_e : Incremento de altura debido a las pérdidas. Su valor se obtiene de la ecuación empírica siguiente:

$$H_e = 0.589 D_s \left(\frac{Q}{D_s^2 \sqrt{gD_s}}\right)^{2.67}$$

K: coeficiente que depende de la relación del diámetro del pozo con el diámetro de la tubería saliente

El termino de energía en condiciones de flujo critico puede determinarse a partir de la siguiente ecuación, conocida también como el "factor de sección":

$$\frac{Q}{\sqrt{g}} = A\sqrt{H} = \frac{\sqrt{2}}{32} \frac{(\theta_c - \sin\theta_c)^{1.5}}{\left[\sin\left(\frac{\theta_c}{2}\right)\right]^{0.5}} D_s^{2.5}$$

La ecuación se resuelve para el valor de θ_c que la satisfaga y se procede luego de calcular:

$$Y_c = \frac{D_s}{2} \left[1 - \cos\left(\frac{\theta_c}{2}\right) \right]$$

$$A_c = \frac{D_s^2}{8} (\theta_c - \sin\theta_c)$$

$$V_c = \frac{Q}{A_c}$$

3. Resultados

Tabla 38

Resultados finales.

Definición (de metodología	a a usar	Energía en condiciones de flujo crítico					
Ns	0,17	Ad	Ecuación	0,0052053	0,00521			
Tipo	entrada no su	ımergida	өс	2,77	rad			
Entra	da No sumergio	da	өс	өс 158,75				
Dp	1,2	m	Características para el flujo crítico					
Qs	0,0163	m3/s	Yc	0,102	m			
Ds	0,250	m3/s	Ac	0,019	m2			
Dp/Ds	4,8	Ad	Vc	0,866	m/s			
K	1,2	Ad	Нс	0,140	m			
Incremento a	altura debido a	pérdidas	Caída en el pozo					
He	0,001	m	Hw	0,170	m			

Con esto la cota de batea para la tubería de salida será:

$$C_{B6} = C_{L5-6} - H_w = 37.63m - 0.17m$$

$$C_{B6} = 37.46m$$

De esta forma, la cota de batea a la salida del pozo 6 sería 37.46m; por lo que las cotas definitivas del colector 6–7 sobre el eje serían:

Tabla 39Cotas para el colector 6-7

Cota	6	7		
Cc6	37,71	37,57		
Cb6	37,46	37,32		

Cota	6	7			
Ce6	37,65	37,51			
Cd6	37,64	37,50			
H (m)	1,29	4,11			

COTAS CONSTRUCTIVAS

Se deben determinar las cotas clave y batea en el pozo 6 (diámetro del pozo = 1,2 m)

Se pueden determinar a partir de la siguiente expresión (teniendo en cuenta que las cotas calculadas en el diseño se determinaban con referencia al centro del pozo):

Dónde:

 C_{ci} : Cota clave constructiva en el pozo i (pozo en estudio)

 C_{ci} : Cota clave determinada en el diseño para el pozo i

 S_{f-i} : Pendiente del colector con pozo inicial f y pozo final i p colectores entrantes; pendiente del colector con pozo inicial i pozo final g para colectores salientes.

 D_{pi} : Diámetro del pozo en estudio

±: + En el caso de colector de entrada, - en el caso de colecto de salida.

Dónde:

 C_{Bi} : Cota Batea en el pozo i (pozo en estudio)

 C_{ci} : Cota clave constructiva en el pozo i

 D_{f-i} : Diámetro del colector con pozo inicial f y pozo final i, ϵ el caso de colector entrante; diámetro del colector con pozo inicial i y pozo final g, en el caso de colector saliente

 $C_{ci} = C_{ci}' \pm S_{f-i} \binom{D_{pi}}{2}$

 $C_{Bi} = C_{ci} + D_{f-i}$

inicial i y pozo final g, en

Para el pozo 6 en estudio, las cotas constructivas serían:

87

Tabla 40

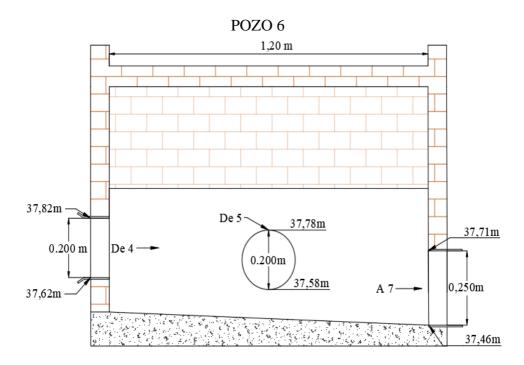
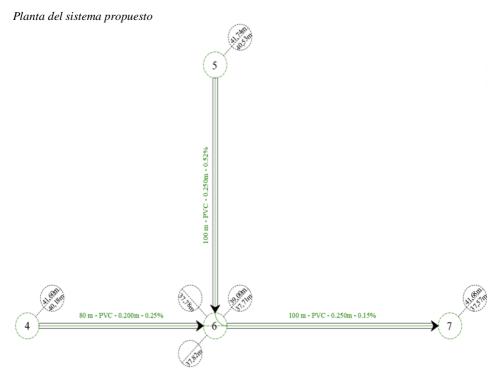
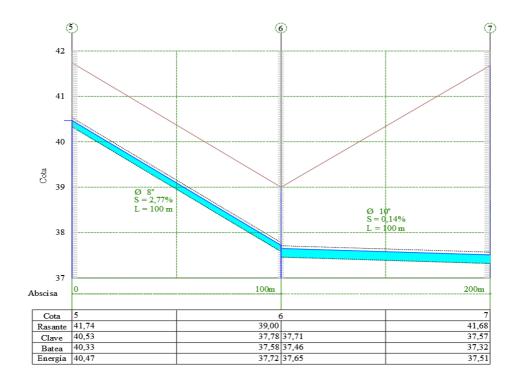
Cotas constructivas colectores 4-6, 5-6 y 6-7.

Colector	4-6	Entrada
Cotas	constru	ctivas
Dp	1,20	m
Cc6	37,82	m
CB6	37,62	m
Caíd	a en la u	nión

Colector	5-6	Entrada				
Cotas	construc	tivas				
Dp	1,20	m				
Cc6	37,78	m				
CB6	37,58	m				
Caída	a en la ui	nión				
Cu	0,26	m				
Cu	0,30	m				

Colector	6-7 Salida											
Cotas	Cotas constructivas											
Dp	1,	m										
Cc6	37	,57	m									
CB6	37	37,32										
Caída en la unión												
Cu	0,00	m										

Figura 11Diseño del pozo 6

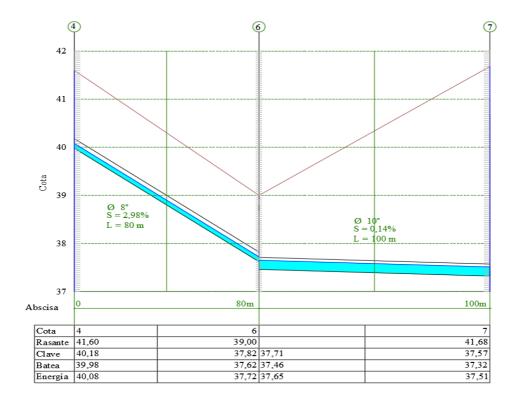

Figura 12

Figura 13Perfiles longitudinales 5,6 y 7.

Figura 14Perfiles longitudinales 4,6 y 8.

Empate cota de energia ejercicio 2 a desarrollar

NOMBRE:	
CÓDIGO: _	 =

Nota: no modifique el número de hojas destinadas, son suficientes. Convierta el archivo a PDF y súbalo en donde el docente le indique. Siga las instrucciones que le indique su docente.

Con la actividad que se propone, se pretende revisar el estudio independiente realizado por los estudiantes sobre el tema: empate por cota de energía.

Actividad: Desarrollar a detalle el ejercicio que se presenta a continuación.

• Realizar el empate por cota de energía en el pozo 6 y el diseño de los colectores entrantes y salientes (colectores 4-6, 5-6, 6-7).

Datos de entrada: n 0.013

Colector 4 - 6	Colector 5 - 6	Colector 6 - 7
Caudal de diseño (LPS):	Caudal de diseño (LPS):	Caudal de diseño
5.54	10.94	(LPS): 16.3
Cota rasante 4: 2741.60 m	Cota rasante 5: 2741.74 m	Cota rasante 6: 2741.58
		m
Cota rasante 6: 2741.58 m	Cota rasante 6: 2741.58 m	Cota rasante 7: 2741.68
		m
Cota clave salida pozo 4:	Cota clave salida pozo 5:	
40.18 m	40.53 m	
Longitud: 80 m	Longitud: 100 m	Longitud: 100 m
Cambio de dirección: 0°	Cambio de dirección: 90°	

Desarrollo

Colector 4 – 6

La información que se encuentra en color azul (ver tabla), son los datos de entrada en las hojas de diseño que cada estudiante ha venido desarrollando a lo largo del curso; las profundidades de instalación de la tubería son elección del diseñador y en este ejemplo puntual dependen de las condiciones aguas arriba. Para el colector en estudio (4-6), la profundidad en el pozo inicial (4), viene establecida por la información inicialmente suministrada:

$$H_4 = C_{R4} - C_{cs4} = 41.60m - 40.18m$$

 $H_4 = 1.42m$

La profundidad en P₆, para que el colector quede horizontal es:

$$H_{min6} = C_{R6} - C_{cs4} = 41.58m - 40.18m$$

 $H_{min6} = 1.4m$

Figura 15

Profundidad mínima en P6, para que el colector quede de forma horizontal.

A partir de la profundidad mínima determinada para el P6, se da pendiente al colector profundizando P6 a valores superiores al Hmin determinado. A través de un método de prueba - error, se cambian las profundidades para el pozo 6, teniendo en cuenta el cumplimiento de la normativa vigente (Res. 0330 de 2017), en cuanto a esfuerzo cortante y relación d/D.

$$\tau > 1.0 \, N/m2$$
 $d/D < 0.85$

El diseño final será:

Tabla 41

Cuadro de verificación del diseño final 4-6.

	Cuadro para verificar el diseño 4-6															
Dat	ън		Cálcı	ılos		Datos de Salida										
Pozos	4	6	Und	RH	Qd	0,0	0554	m3/s	S	0,0	025	m/m				
Pesp	98	810	N/m3	V/vo	D diseño	5,2"	5,2" 0,133		CC	40,18	39,98	m				
n	0,	013	AD	0,76	Qo	0,0	0,01642		CE	40,08	39,88	m				
Qd	5	,54	1/s	d/D	Vo	0,	0,523		CL	40,07	39,87	m				
L		80	m	0,45	Q/Qo	0	,34	AD	СВ	39,98	39,78	m				
CR	41,6	41,58	m	R/Ro	v2/2g	0,	0,008		V	0,3	897	m/s				
H min (Pf)	1	1,4	m	0,94	d	0	0,09		0,09		0,09		Е	0,	10	m
Н	1,42	1,6	m	H/D	R	0,047		0,047 m		Ф 1,2		N/m2				
D comercial	8"	0,200	m	0,35	Н	0	,07	m	NF	0,5	subc	rítico				

Figura 16

Perfil del colector 4-6

Colector 5 – 6

Para el colector en estudio (5-6), la profundidad en el pozo inicial (5), viene establecida por la información inicialmente suministrada:

$$H_5 = C_{R5} - C_{cs5} = 41.74m - 40.53m$$

$$H_5 = 1.21m$$

La profundidad mínima en P₆, para que el colector quede horizontal es:

$$H_{min6} = C_{R6} - C_{cs4} = 41.58m - 40.53m$$

 $H_{min6} = 1.05m$

Figura 17Perfil del colector 5-6, profundidad mínima

A partir de la profundidad mínima determinada para el P_6 , se da pendiente al colector profundizando P_6 a valores superiores al H_{min} determinado. A través de un método de prueba - error, se cambian las profundidades para el pozo 6, teniendo en cuenta el cumplimiento de la normativa vigente (Res. 0330 de 2017), en cuanto a esfuerzo cortante y relación d/D. En este caso se puede empezar por 1.20m sabiendo que la profundidad mínima por norma es de ese valor.

$$\tau > 1.0 \, N/m2$$
 $d/D < 0.85$

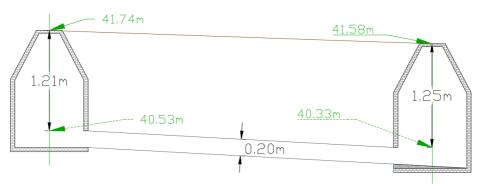

El diseño final será:

Tabla 42

Cuadro de verificación del diseño final 5-6

	Cuadro para verificar el diseño 5-6													
Dat	Datos de entrada					Cálc	ulos			Datos	de Salid	a		
Pozos	5	6	Und	RH	Qd	0,0	1094	m3/ s	s	0,0	020	m/m		
Pesp	98	310	N/m 3	V/vo	Ddiseñ o	7,1	0,17 9	m	C C	40,5 3	40,3 3	m		
n	0,0	013	AD	0,97	Qo	0,01468		m3/ s	CE	40,4 8	40,2 8	m		
Qd	10	,94	1/s	d/D	Vo	0,467		m/s	CL	40,4 7	40,2 7	m		
L	10	00	m	0,72	Q/Qo	0	,75	AD	C B	40,3 3	40,1 3	m		
CR	41,7 4	41,5 8	m	R/R o	v2/2g	0,	010	m	v	0,453		m/s		
Hmin (Pf)	1,	05	m	1,19	d	0,14		m	Е	E 0,15		m		
Н	1,21	1,25	m	H/D	R	R 0,060		m	Ф	1,2		N/m 2		
Dcomercia 1	8"	0,20 0	m	0,68	Н	0	,14	m	NF	0,4	subc	rítico		

Figura 18Perfil del colector 5-6

Antes de pasar al diseño del colector 6-7, se deben comparar las cotas de energía a la llegada al pozo 6:

$$C_{E4-6} = 39.88 \text{ m}$$
 $C_{E5-6} = 40.28 \text{ m}$

Nota: el colector que define el empate es el que llega con la cota de

energía más baja; que en este caso es el (4-6), entonces debe rediseñarse el o los demás colectores para que lleguen con la misma cota de energía del (4-6).

REDISEÑO COLECTOR 5 - 6

El colector 5-6 puede ser rediseñado bajo dos alternativas: Alternativa 1: D=8" profundidad $H_6=1.63$ m.

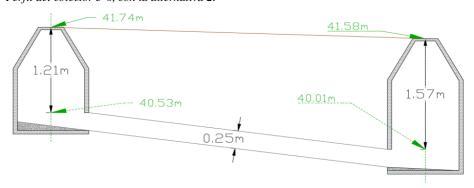
Tabla 43

Cuadro de verificación del diseño, alternativa 1, colector 5-6.

	Cuadro para verificar el diseño 5-6													
Dat	tos de er	ıtrada		RH		Datos de Salida								
Pozos	5	6	Und	KII	Qd	0,0	1094	m3/ s	S	0,0	058	m/m		
Pesp	98	10	N/m 3	V/vo	Ddiseñ o	5,8	0,14 7	m	C C	40,5 3	39,9 5	m		
n	0,0)13	AD	0,82	Qo	0,0	2500	m3/ s	CE	40,4 6	39,8 8	m		
Qd	10.	,94	1/s	d/D	Vo	0,	796	m/s	CL	40,4 3	39,8 5	m		
L	10	00	m	0,52	Q/Qo	0	,44	AD	C B	40,3 3	39,7 5	m		
CR	41,7 4	41,5 8	m	R/R o	v2/2g		.022	m	v	0,653		m/s		
Hmin (Pf)	1,0		m	1,04	d	0,022		m	E			m		
Н	1,21	1,63	m	H/D	R	0,052		m	T T	3,0		N/m 2		
Dcomercia 1	8"	0,20	m	0,42	Н		,08	m	NF	0,7				

Alternativa 2: D = 10" profundidad $H_6 = 1.57$ m

Tabla 44


Cuadro de verificación del diseño, alternativa 2, colector 5-6.

			C	uadro p	ara verifi	icar el	diseño 5	5-6				
Dat	Datos de entrada					Cálc	ulos			Datos	de Salid	a
Pozos	5	6	Und	RH	Qd	0,0	1094	m3/ s	S	0,0	052	m/m
Pesp	98	10	N/m 3	V/vo	Ddiseñ o	5,9 "	0,15 0	m	C C	40,5 3	40,0 1	m
n	0,0	13	AD	0,7	Qo	0,0	0,04293		CE	40,4 0	39,8 8	m
Qd	10,	94	1/s	d/D	Vo	0,874		m/s	CL	40,3 8	39,8 6	m
L	10	00	m	0,39	Q/Qo	0	,25	AD	C B	40,2 8	39,7 6	m
CR	41,7 4	41,5 8	m	R/R o	v ² /2g	0,	019	m	V	0,612		m/s
Hmin (Pf)	1,0	05	m	0,84	d	0,10		m	m E		0,12	
Н	1,21	1,57	m	H/D	R	R 0,053		m	Ф	2,7		N/m 2
Dcomercia 1	10"	0,25 0	m	0,29	Н	0	,07	m	NF	0,7	subc	rítico

Nota: se elige la alternativa 2 ya que es conveniente mantener siempre el alcantarillado lo más superficial posible.

Figura 19

Perfil del colector 5-6, con la alternativa 2.

Colector 6-7

El colector 6 – 7 (colector de salida del pozo 6) debe ser diseñado teniendo en cuenta los colectores aguas arriba (4-6 y 5-6). Al pozo 6 ingresan don colectores con diámetros de 8" y 10", por ende, el colector de salida no debe tener un diámetro menor a 10". No se permite la reducción de diámetro.

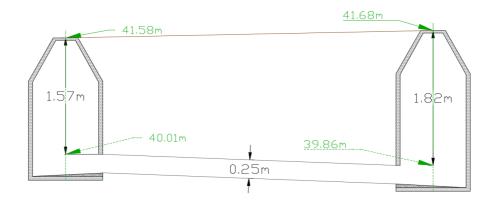

Para el diseño del colector saliente, se supone empate por cota calve; esto para tomar referencia de la profundidad en el punto inicial (6) del colector 6-7. Se toma como referencia el colector con mayor diámetro, en este caso el colector (5-6), es decir H6 = 40.01 m. Con este valor se procede a realizar el diseño del colector de salida (6-7).

Tabla 45

Cuadro de verificación del diseño colector 6-7.

			C	uadro p	ara verifi	car el (diseño 6	-7				
Dat			Cálcı	ılos		Datos de Salida						
Pozos	6	7	Und	RH	Qd	0,0	0163	m3/ s	s	0,0	015	m/m
Pesp	98	10	N/m 3	V/v o	D diseño	8,6	0,22	m	C C	40,0 1	39,8 6	m
n	0,0	13	AD	0,95	Qo	0,0	2305	m3/ s	C E	39,9 5	39,8 0	m
Qd	16	,3	1/s	d/D	Vo	0,470		m/s	C L	39,9 4	39,7 9	m
L	10	00	m	0,7	Q/Qo	0	,71	AD	C B	39,7 6	39,6 1	m
CR	41,5 8	41,6 8	m	R/R o	v2/2g	0,	010	m	V	0,446		m/s
Hmin (Pf)	1,0	57	m	1,18	d	0	0,18		Е	E 0,19		m
Н	1,57	1,82	m	H/D	R	0,074		m	Ф	1,1		N/m 2
D comercial	10"	0,25 0	m	0,63	Н	0	,16	m	N F	0,4	subc	rítico

Figura 20
Perfil del colector 6-7.

ANALISIS DETALLADO EMPATE POR COTA DE ENERGIA Empate por la línea de energía del colector 4 - 6 con 6 - 7:

• Cambio de dirección

No hay cambio de dirección

Transición

$$\begin{array}{c|c} V_2 = V_{6\text{-}7} = 0,446 & \text{m/}_S \\ V_1 = V_{4\text{-}6} = 0,397 & \text{m/}_S \\ V_2 > V_1 & & V_2 > V_1 \\ K = 0,1 & & K = 0,1 \end{array}$$

$$\Delta H_t = (0.1) |0.010m - 0.008m| = 0.0002 m$$
 (valor despreciable)

$$H_T = 0m + 0{,}0002 m \cong 0m$$

Con esto la cota de energía a la salida del pozo 6, sería:

$$C_{E6} = C_{Eentrada} - \Delta H = C_{E6(para\ el\ colector\ 4-6)} - (\Delta H_d + \Delta H_t)$$

$$C_{E6} = 39,88\ m - 0,0002\ m$$

$$C_{E6} = 39,88\ m$$

Empate por la línea de energía del colector 5 - 6 con 6 - 7:

Cambio de dirección:

$$\Delta H_{t} = k \left| \frac{V_{2}^{2}}{2g} - \frac{V_{1}^{2}}{2g} \right| V_{1} = V_{5-6} = 0,612 \text{ m/s}$$

$$V_{1} = V_{5-6} = 0,612 \text{ m/s}$$

$$V_{1} < V_{2}$$

$$V_{1} < V_{2}$$

$$K = 0,2$$

$$\Delta H_{t} = (0,2)|0,010m - 0,019m| = 0,002 \text{ m}$$

$$H_T = 0.003m + 0.002 m \cong 0.01m$$

(valor despreciable)

Con esto la cota de energía a la salida del pozo 6, sería:

$$C_{E6} = C_{Eentrada} - \Delta H = C_{E6(para\ el\ colector\ 5-6)} - (\Delta H_d + \Delta H_t)$$

$$C_{E6} = 39,88 m - 0,01 m$$

 $C_{E6} = 39,87 m$

De esta forma, la cota de energía a la salida del pozo 6 sería 39,87m; por lo que las cotas definitivas del colector 6–7 sobre el eje serían:

$$C_{E6} = 39,87m$$

$$C_{B6} = C_{E6} - E_{6-7} = 39,87m - 0,19m = 39,68m$$

$$C_{C6} = C_{B6} + D_{6-7} = 39,68m + 0,25m = 39,93m$$

$$C_{L6} = C_{B6} + d_{6-7} = 39,68m + 0,18m = 39,86m$$

$$H_6 = C_{R6} - C_{C6} = 41,58m - 39,93m = 1,65m$$

$$\begin{split} C_{E6} &= C_{B6} + E_{6-7} = 39,\!53\text{m} + 0,\!19\text{m} = 39,\!72\text{m} \\ C_{B7} &= C_{B6} - S_{6-7} \text{ x } L_{6-7} = 39,\!68\text{m} - (0,\!0015\text{x}100\text{m}) = 39,\!53\text{m} \\ C_{C7} &= C_{B7} + D_{6-7} = 39,\!53\text{m} + 0,\!25\text{m} = 39,\!78\text{m} \\ C_{L7} &= C_{B7} + d_{6-7} = 39,\!53\text{m} + 0,\!18\text{m} = 39,\!71\text{m} \\ H_7 &= C_{R7} - C_{c7} = 41,\!68\text{m} - 39,\!78\text{m} = 1,\!9\text{m} \end{split}$$

COTAS CONSTRUCTIVAS

Se deben determinar las cotas clave y batea en el pozo 6 (diámetro del pozo = 1,2 m)

Se pueden determinar a partir de la siguiente expresión (teniendo en cuenta que las cotas calculadas en el diseño se determinaban con referencia al centro del pozo):

$$C_{ci} = C_{ci}' \pm S_{f-i} \binom{D_{pi}}{2}$$

Dónde:

 C_{ci} : Cota clave constructiva en el pozo i (pozo en estudio)

 C_{ci} : Cota clave determinada en el diseño para el pozo i

 S_{f-i} : Pendiente del colector con pozo inicial f y pozo final i para colectores entrantes; pendiente del colector con pozo inicial i y pozo final g para colectores salientes.

 D_{pi} : Diámetro del pozo en estudio

±: + En el caso de colector de entrada, - en el caso de colector de salida.

$$C_{Bi} = C_{ci} + D_{f-i}$$

Dónde:

 C_{Bi} : Cota Batea en el pozo i (pozo en estudio)

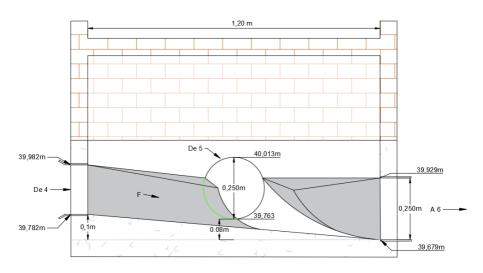
 C_{ci} : Cota clave constructiva en el pozo i

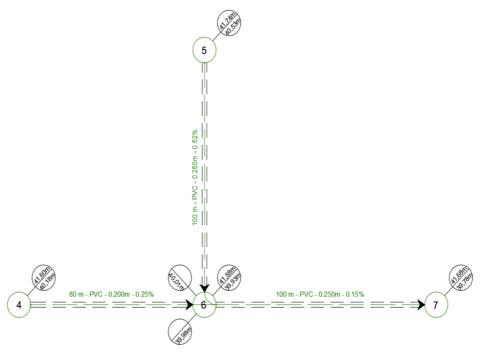
 D_{f-i} : Diámetro del colector con pozo inicial f y pozo final i, en el caso de colector entrante; diámetro del colector con pozo inicial i y pozo final g, en el caso de colector saliente.

Para el pozo 6 en estudio, las cotas constructivas serían:

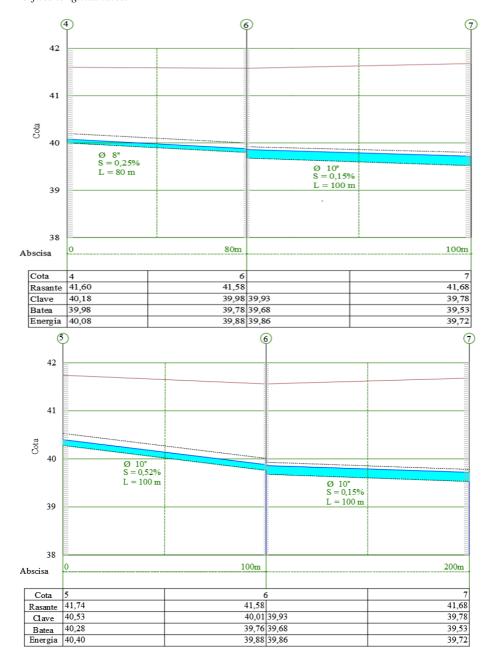
Tabla 46

Cotas constructivas de los colectores 4-6, 5-6 y 6-7.


Colector	4-6	Entrada		
Cotas constructivas				
Cc6	39,982	m		
CB6	39,782	m		
Caída en la unión				
Cu	0,102	m		


Colector	5-6	Entrada		
Cotas constructivas				
Cc6	40,013	m		
CB6	39,763	m		
Caída en la unión				
Cu	0,084	m		

Colector	6-7	Salida		
Cotas constructivas				
Cc6	39,929	m		
CB6	39,679	m		
Caída en la unión				
Cu	0,000	m		


Figura 21

Corte y planta del sistema propuesto pozo 6.

Figura 22Perfiles longitudinales.

ANEXOS

Anexo 1

Flujo subcrítico (NF < 0.9)

Igualar la cota de energía del colector principal entrante al pozo, con la cota de energía del colector saliente

$$Z_1 + d_1 + \frac{{V_1}^2}{2a} = Z_2 + d_2 + \frac{{V_2}^2}{2a} + \Delta H_e$$
 (32)

La ecuación de energía entre las tuberías de entrada y salida al centro del pozo

$$Z_1 - Z_2 = \left(d_2 + \frac{{V_2}^2}{2g}\right) - \left(d_1 + \frac{{V_1}^2}{2g}\right)$$
 (33)

Caída en el pozo (diferencia de cotas de batea entre la entrada y la salida)

Nota: si la caída en el pozo resulta ser mayor de 0.75 m, debe proyectarse una cámara de caída.

Nota: si la caída en el pozo resulta ser negativa, la cota de batea saliente será igual a la cota de batea entrante; en ninguna circunstancia debe elevarse la cota de batea a la salida del pozo.

 Z_1 : altura de posición de la tubería de entrada (cota de batea a la entrada)

 Z_2 : altura de posición del colector de salida (cota de batea a la salida)

 d_1 : altura de la lámina de agua en la tubería de entrada

 d_2 : altura de la lámina de agua en la tubería de salida

 $\frac{{V_1}^2}{2g}$: altura de velocidad en la tubería de entrada

 $\frac{{V_2}^2}{2g}$: altura de velocidad en la tubería de salida

 ΔH_e : pérdidas de emergía ocurridas por el empate de las tuberías

Nota: Las pérdidas de energía en el pozo se por cambio de dirección y por la unión o transición, considerar estas pérdidas implica una diferencia de alturas entre la línea de energía entrante principal y la línea de energía saliente de acuerdo al numeral 2.1.8.1.1 y a la ecuación (7).

Calculo hidráulico de colectores flujo supercrítico

Como se explicó en el 2.1.2. los colectores se diseñan para trabajar en flujo por gravedad, se diseñan tradicionalmente a flujo uniforme, tomando a base la ecuación de Manning:

$$V = \frac{R^{\frac{2}{3}} \times S^{\frac{1}{2}}}{n} = 0.399 * \frac{D^{\frac{2}{3}} \times S^{\frac{1}{2}}}{n} (34)$$

En términos de caudal se define:

$$D_d = 1.548 * \left(\frac{n*Q_d}{S^{1/2}}\right)^{3/8} (35)$$

Dónde:

V = Velocidad (m/s)

R= Radio hidráulico (m)

S= Pendiente (m/m)

n= Coeficiente de rugosidad de Manning de acuerdo al valor de las

tablas

 Q_d = Caudal de diseño(m3/s)

 D_d = Diámetro de diseño (m)

Figura 23

Coeficiente de rugosidad de Manning para diferentes materiales de las tuberías

	Material de l	a tubería	- 154	3.0	n	1377.57
			A STATE OF THE STA			11173
Cloruro de polivinil	O :				0.009	
Asbesto-cemento					0.012	
Concreto reforzado	prefabricado				0.013	
Gres o concreto sir	mple				0.014	
Conductos en cond circular, rectangula			idos <i>in situ</i> , de	sección		
a) Con acabado e	special de la supe	rficie*			0.015	
b) Sin acabado es	special de la supe	rficie			0.017	
Conductos constru	idos en mampost	ería de lad	rillo		0.016	
Canales de concre	to o revestidos en	concreto s	imple o reforza	do:		
a) Con acabado es	special de la supe	ficie*			0.015	
b) Sin acabado es	special de la supe	rficie			0.017	
Canaletas o cuneta	is revestidas en c	oncreto sim	ple o ladrillo		0.017	
Canales excavados	s en tierra				0.035	
Canales excavados	en tierra recubie	rtos con ve	getación	1.5	0.027-0.050) .
Canales excavados	en roca				0.035-0.060	

Acabado tipo F4 de la norma C.22 "Estructuras de Concreto", de las normas de la Empresa de Acueductos y Alcantarillados de Bogotá.

Nota: La figura representa los coeficientes de rugosidad de Manning, para varios tipos de materiales de las tuberías. Tomado de Elementos de diseño de acueductos y alcantarillados p. 281 por (Cualla, 1995).

Empate por línea de energía para flujo supercrítico

Empate para flujo supercrítico en estructuras con caída

El flujo supercrítico como se menciono 2.1.8.1.2. Se busca determinar la caída del pozo de tal manera que la elevación de la lámina de agua sea mayor. La entrada a la tubería de salida puede estar sumergida o no (Cualla, 1995).

1. Entrada no sumergida

$$\frac{Q}{D^2 * \sqrt{g * D_s}} < 0.62 (36)$$

Es decir

$$\frac{0.319*Q}{D_c^{2.5}}$$
 < 0.62 (37)

Dónde:

Q = Caudal de la tubería de salida (m³/s)

D_s = Diámetro de la tubería de salida (m)

La caída en la estructura de unión (H_w) , podemos calcularla de acuerdo a la siguiente ecuación (Cualla, 1995).

$$\frac{H_w}{D_s} = K * \left(\frac{H_c}{D_s} + \frac{H_e}{D_s}\right) (38)$$

Dónde:

 H_w = Profundidad esperada del agua en la estructura de conexión K = Coeficiente que depende de la relación del diámetro del pozo con el diámetro de la tubería saliente se puede obtener de acuerdo a la tabla 27.

H_c= Energía específica para las condiciones de flujo critico se puede

hallar de la siguiente forma:

$$H_c = Y_c + \frac{V_c^2}{2*g}$$
 (39)

 H_e = Incremento de altura debido a las pérdidas se puede obtener de:

$$H_e = 0.589 * D_s * \left(\frac{Q}{D_s^2 * \sqrt{g * D_s}}\right)^{2.67} (40)$$

Coeficiente K

Tabla 47

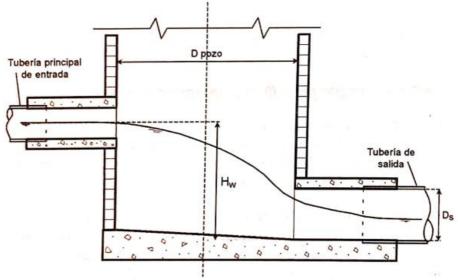
D_{pozo}/D_{salida}	K
> 2.0	1.2
1.6 - 2.0	1.3
1.3 – 1.6	1.4
< 1.3	1.5

Nota: La tabla representa los coeficientes que depende de la relación del diámetro del pozo y el diámetro de salida de la tubería .Tomado de Elementos de diseño de acueductos y alcantarillados p. 287 por (Cualla, 1995).

El termino de energía en condiciones de flujo critico puede determinarse a partir de la siguiente ecuación, conocida también como el "factor de sección":

$$\frac{Q}{\sqrt{g}} = A\sqrt{H} = \frac{\sqrt{2}}{32} \frac{(\theta_c - \sin\theta_c)^{1.5}}{\left[\sin\left(\frac{\theta_c}{2}\right)\right]^{0.5}} D_S^{2.5}$$
(41)

La ecuación se resuelve para el valor de θ_c que la satisfaga y se procede luego de calcular:


$$Y_c = \frac{D_S}{2} \left[1 - \cos \left(\frac{\theta_c}{2} \right) \right]$$
(42)

$$A_c = \frac{D_s^2}{8} (\theta_c - \sin \theta_c)$$
 (43)

$$V_c = \frac{Q}{A_c} (44)$$

Figura 24

Empate para flujo supercrítico con pozo de caída y entrada no sumergida.

Nota: La figura representa el empate con flujo supercrítico. Tomado de Elementos de diseño de acueductos y alcantarillados p. 286 por (Cualla, 1995).

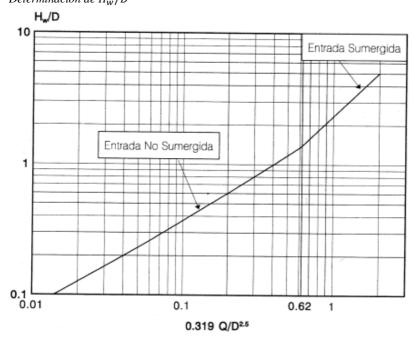
2. Entrada sumergida

Cumple

$$\frac{Q}{D^2 * \sqrt{g * D_s}} > 0.62 (45)$$

Es decir

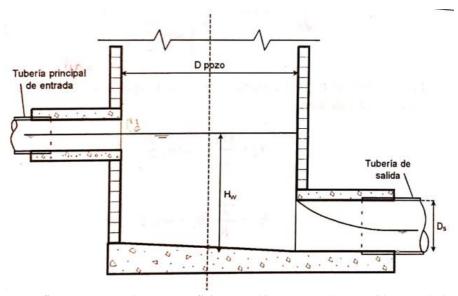
$$\frac{0.319*Q}{D_S^{2.5}}$$
 < 0.62 (46)


La caída en el pozo se determina

$$\frac{H_w}{D_S} = K * \left[0.7 + 1.91 * \left(\frac{Q}{D_S^2 * \sqrt{g * D_S}} \right)^2 \right]$$
 (47)

Se puede usar las siguiente grafica para para cálculo de H_w.

Determinación de H_w/D


Figura 25

Nota: La figura representa el cálculo de H_W/D que se ve afectado por el coeficiente d ela tabla 47. Tomado de Elementos de diseño de acueductos y alcantarillados p. 289 por (Cualla, 1995).

Figura 26

Empate para flujo supercrítico con pozo de caída y entrada sumergida.

Nota: La figura representa el empate con flujo supercrítico con entrada sumergida. Tomado de Elementos de diseño de acueductos y alcantarillados p. 286 por (Cualla, 1995).

Figura 27
Normas técnicas de materiales, mezclas de concreto y aceros de refuerzo

Material	Norma ICONTEC o Internacional
Cemento portland	NTC 30, NTC 121, NTC 321
Agregado grueso	NTC 126, NTC 174, NTC 183, NTC 589
Agregado fino	NTC 127, NTC 174
Aditivos	NTC 1299; ASTM C 260, ASTM C 618

Tipo de refuerzo	Norma ICONTEC
Acero de refuerzo liso	NTC 161
Acero de refuerzo corrugado	NTC 248
Alambre de acero para refuerzo	NTC 116
Alambre de acero al carbono grafilado para refuerzo de concreto	NTC 1907
Alambre de refuerzo de concreto pretensado	NTC 159
Mallas de acero soldadas frabicadas con alambre liso para refuerzo de concreto	NTC 1925
Mallas de acero soldadas fabricadas con alambre corrugado	NTC 2310
Barras de acero de carbono, trabajadas en frío	NTC 245

Nota: La figura representa las normas técnicas de materiales, mezclas de concreto y aceros de refuerzo Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico (p.D.29- D.30), por RAS,(2000).

Figura 28

Periodos de retorno de acuerdo a las características del drenaje.

Características del área de drenaje	Período de retorno (años)
Tramos iniciales en zonas residenciales con áreas tributarias menores de 2 hectáreas	3
Tramos iniciales en zonas comerciales o industriales, con áreas tributarias menores de 2 hectáreas	5
Tramos de alcantarillado con áreas tributarias entre 2 y 10 hectáreas	5
Tramos de alcantarillado con áreas tributarias mayores de 10 hectáreas	10
Canales abiertos que drenan áreas menores a 1000 hectáreas	50
Canales abiertos en zonas planas y que drenan áreas mayores a 1000 hectáreas	100
Canales abiertos en zonas montañosas (alta velocidad) o a media ladera, que drenan áreas mayores a 1000 hectáreas	100

Nota: La figura representa los periodos de retorno de acuerdo a las características del área de drenaje. Tomado de Reglamento Técnico del sector de agua potable y saneamiento básico p.85, por (RAS, 2017).

Figura 29

Coeficiente de escorrentía típico.

Tipo de superficie	Coeficiente
- Zonas comerciales	0.90
 Desarrollos residenciales con casas contiguas y predominio de zonas duras Desarrollos residenciales multifamiliares con bloques 	0.75
contiguos y zonas duras entre ellos	0.75
 Desarrollo residencial unifamiliar con casas contiguas y predominio de jardines 	0.55
 Desarrollo residencial con casas rodeadas de jardines o multifamiliares apreciablemente separados 	0.45
Areas residenciales con predominio de zonas verdes y	
cementerios tipo jardines - Laderas desprovistas de vegetación	0.30
Laderas protegidas con vegetación	0.60 0.30

Nota: La figura representa el coeficiente de escorrentía típico de acuerdo a las superficies. Tomado de Elementos de diseño de acueductos y alcantarillados p. 319 por (Cualla, 1995).

Figura 30

Caudal de las bombas tornillo y altura de acuerdo al ángulo de inclinación.

Cau	dal	Altura máxima en m.					
m3/h	I/s	30°	35°	38º			
60	17	4,50	5,20	6,00			
80	22	4,50	5,20	6,00			
100	28	4,50	5,20	6,00			
120	33	4,50	5,20	6,00			
140	39	4,50	5,20	6,00			
160	44	4,50	5,20	6,05			
180	50	4,50	5,20	6,10			
200	56	4,50	5,26	6,20			
220	61	4,50	5,33	6,30			
240	67	4,50	5,40	6,40			
260	72	4,53	5,43	6,45			
280	78	4,56	5,46	6,50			
300	83	4,60	5,50	6,55			
320	89	4,63	5,53	6,60			
340	94	4,66	5,56	6,65			
360	100	4,70	5,60	6,70			
380	106	4,72	5,63	6,74			
400	111	4,75	5,66	6,78			
420	117	4,77	5,70	6,82			
440	122	4,80	5,73	6,86			
460	128	4,82	5,76	6,90			
480	133	4,85	5,80	6,95			
500	139	4,87	5,83	6,99			
520	144	4,90	5,86	7,03			
540	150	4,92	5,90	7,07			

560	156	4,95	5,93	7,11
580	161	4,97	5,96	7,15
600	167	5,00	6,00	7,20
620	172	5,04	6,04	7,29
640	178	5,08	6,08	7,38
660	183	5,12	6,12	7,46
680	189	5,16	6,16	7,53
700	194	5,20	6,20	7,60
720	200	5,24	6,24	7,65
740	206	5,28	6,28	7,70
760	211	5,32	6,32	7,74
780	217	5,36	6,36	7,77
800	222	5,40	6,40	7,80
820	228	5,44	6,47	7,89

Cau	dal	Altura máxima en m.					
m3/h	l/s	30°	35°	38°			
840	233	5,48	6,53	7,98			
860	239	5,52	6,59	8,06			
880	244	5,56	6,65	8,13			
900	250	5,60	6,70	8,20			
920	256	5,63	6,74	8,25			
940	261	5,66	6,77	8,30			
960	267	5,69	6,80	8,34			
980	272	5,72	6,83	8,37			
1000	278	5,75	6,85	8,40			
1100	306	5,76	6,86	8,42			
1200	333	5,78	6,88	8,44			
1300	361	5,79	6,90	8,46			
1400	389	5,81	6,91	8,48			
1500	417	5,83	6,93	8,50			
1600	444	5,84	6,94	8,52			
1700	472	5,85	6,96	8,54			
1800	500	5,87	6,97	8,56			
1900	528	5,88	6,98	8,58			
2000	556	5,90	7,00	8,60			
2100	583	5,91	7,01	8,61			
2200	611	5,92	7,02	8,63			
2300	639	5,93	7,03	8,65			
2400	667	5,95	7,04	8,66			
2500	694	5,96	7,05	8,68			

2600	722	5,97	7,07	8,70		
2700	750	5,98	7,08	8,71		
2800	778	5,99	7,09	8,73		
2900	806	6,00	7,10	8,74		
3000	833	6,01	7,11	8,76		
3100	861	6,02	7,12	8,77		
3200	889	6,03	7,12	8,78		
3300	917	6,04	7,13	8,80		
3400	944	6,05	7,14	8,81		
3500	972	6,06	7,15	8,83		
3600	1000	6,06	7,16	8,84		
3700	1028	6,07	7,17	8,85		
3800	1056	6,08	7,18	8,87		
3900	1083	6,09	7,19	8,88		
4000	4000 1111		7,20	8,90		
4100	4100 1139		7,20	8,91		
4200	1167	6,11	7,21	8,92		

Cau	dal	-	Altura máxima en n	١.	
m3/h	I/s	30°	35°	38º	
4300	1194	6,12	7,22	8,94	
4400	1222	6,12	7,23	8,95	
4500	1250	6,13	7,24	8,96	
4600	1278	6,13	7,25	8,98	
4700	1306	6,14	7,26	8,99	
4800	1333	6,15	7,27	9,01	
4900	1361	6,15	7,28	9,02	
5000	1389	6,16	7,29	9,04	
5100	1417	6,16	7,30	9,05	
5200	1444	6,16	7,31	9,07	
5300	1472	6,17	7,32	9,08	
5400	1500	6,17	7,33	9,10	
5500	1528	6,18	7,34	9,11	
5600	1556	6,18	7,35	9,13	
5700	1583	6,19	7,36	9,14	
5800	1611	6,19	7,37	9,16	
5900	1639	6,19	7,38	9,18	
6000	1667	6,20	7,40	9,20	

Nota: La figura representa el caudal de las bombas tornillo y altura de acuerdo al ángulo de inclinación. Tomado de diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras, p: 320-322, por (Pérez R., 2015).

Figura 31

Variación del caudal y rendimiento respecto al nivel de agua a la entrada del tornillo


Q%	η%	Q%	П%	Q%	η%	Q%	η%	Q%	η%	Q%	η%	Q %	П%
6	43,0	20	60,0	34	65,9	48	70,6	62	72,7	76	73,7	90	74,5
7	44,5	21	60,4	35	66,3	49	70,8	63	72,8	77	73,7	91	74,5
8	46,3	22	60,7	36	66,8	50	71,0	64	73,0	78	73,8	92	74,6
9	48,1	23	61,1	37	67,2	51	71,1	65	73,1	79	73,9	93	74,6
10	50,0	24	61,5	38	67,7	52	71,3	66	73,2	80	74,0	94	74,7
11	51,7	25	61,8	39	68,1	53	71,4	67	73,3	81	74,0	95	74,7
12	53,2	26	62,2	40	68,5	54	71,6	68	73,3	82	74,1	96	74,8
13	54,6	27	62,6	41	68,8	55	71,7	69	73,4	83	74,1	97	74,8
14	55,8	28	63,0	42	69,1	56	71,9	70	73,5	84	74,2	98	74,9
15	56,8	29	63,5	43	69,4	57	72,0	71	73,5	85	74,2	99	74,9
16	57,6	30	64,0	44	69,7	58	72,2	72	73,5	86	74,3	100	75,0
17	58,4	31	64,4	45	70,0	59	72,3	73	73,6	87	74,3		
18	59,0	32	64,9	46	70,2	60	72,5	74	73,6	88	74,4		
19	59,5	33	65,4	47	70,4	61	72,6	75	73,7	89	74,4		

Nota: La figura representa el caudal de las bombas tornillo y altura de acuerdo al ángulo de inclinación. Tomado de diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras, p: 322, por (Pérez R., 2015).

BIBLIOGRAFÍA

- Cualla, R. (1995). Elementos de diseño para acuedudtos y alcantarillados. In *Journal of Chemical Information and Modeling* (Vol. 1).
- PAVCO. (n.d.). *Tubería PVC Alcantarillado Novafort*. Retrieved September 16, 2021, from https://pavcowavin.com.co/tuberia-pvc-alcantarillado-novafort-pavco
- Pérez, R. (2013). Diseño y construcción de alcantarillados sanitario, pluvial y drenaje en carreteras. 592.
- Pérez R. (2015). Dise o y construcci on de alcantarillados : sanitario, pluvial y drenaje en carreteras. Ecoe Ediciones.
- Presentación Ingeniería Civil. (n.d.). Retrieved July 29, 2021, from https://www.ustatunja.edu.co/presentacion-civil#perfil-profesional
- RAS. (2000). Sistemas de Recolección y Evacuación de Aguas Residuales y Pluviales. *Reglamento Técnico Del Sector de Agua Potable y Saneamiento Básico*, 102.
- RAS. (2017). *0330 2017.Pdf* (p. 77).
 - http://www.minvivienda.gov.co/ResolucionesAgua/0330 2017.pdf
- Sanitario, A. (2014). Lineamientos Técnicos para Factibilidades, SIAPA CRITERIOS Y LINEAMIENTOS TÉCNICOS PARA FACTIBILIDADES.

 Actualización de Los Criterios y Lineamientos Técnicos Para Factibilidades En La Z.M.G., 38, 1–38.

Cartilla- Guía de diseño y construcción de alcantarillados Danna Tatiana Jiménez Rivera

> Universidad Santo Tomás Tutor: M.s.C William Ricardo Mozo Moreno

> > Tunja, Boyacá 2021